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Abstract

Training the hyperparameters of Gaussian process regression (GPR) is expensive.1

However, even after the initial training, data analysts often need to repeatedly adjust2

the hyperparameters until the regression curve achieves a desirable smoothness.3

These subsequents adjustments are quite slow, each requiring O(n3) operations4

given n data points. We propose an alternative model construction for GPR that5

allows for much faster adjustments of the smoothness. Our construction maintains6

orthogonal non-linear regressors, each associated with a different smoothness level.7

Those orthogonal regressors can be combined almost instantly according to the8

requested smoothness level. Our empirical study shows that for varying levels9

of requested smoothness, the quality of our model’s regression curve is nearly10

identical to those generated by standard GPR. Our approach is also amenable to11

sparse approximations; thus, it can scale to datasets with millions of data points.12

1 Introduction13

Gaussian process regression (GPR) is a popular non-linear method for probabilistic inference [14].14

Unlike linear regression, GPR does not assume any parametric functional forms (e.g., linear, quadratic,15

etc.), which allows GPR to extract an underlying non-linear pattern (i.e., regression curve) for a16

dataset drawn from an arbitrary distribution. However, the smoothness of the underlying pattern must17

be determined using its hyperparameters.118

Despite its expressiveness, GPR has a few drawbacks that have precluded it from becoming a user-19

friendly, real-time data exploration tool. GPR’s typical workflow is as follows. When the analyst20

initially invokes a training algorithm, it first finds the optimal hyperparameters (a.k.a. hyperparameter21

tuning) according to some goodness criteria (e.g., marginal likelihood, variational free energy22

[2]), and then trains a single model based on those hyperparameters. The model with its optimal23

hyperparameters is expected to yield the lowest error on new (unseen) data. This initial training24

process takes O(t n3) time, where n is the number of data points and t is the number of iterations25

the algorithm performs to find the optimal hyperparameters. The analyst then decides whether the26

regression curve overfits (or underfits) the data, and if so, adjusts the hyperparameters manually27

and invokes the training algorithm again to obtain a new regression curve based on those manually28

specified hyperparameters. The analyst may continue to repeatedly adjust and retry until s/he finds29

the most desired model. Each of these model adjustments takes O(n3). As a result, GPR is not an30

ideal candidate for data warehouse dashboards and business intelligent (BI) tools, where users expect31

fast (i.e., real-time) exploration of data with different model granularities.32

In this paper, we propose a data-analyst-friendly extension of GPR, which we call Gaussian Process33

regression in latent space (LATENTGP). The key advantage of LATENTGP is its ability to simultane-34

ously train multiple submodels with different smoothness levels, rather than training a single model.35

1This is true for the GPR with a squared exponential covariance function, a Matérn covariance function, or a
γ-exponential covariance function, which we focus on in this paper.
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(a) Raw data (10K points)
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(b) Initial training (took 26 sec)
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(c) A more data-sensitive curve (took 0.10 sec)
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(d) A smoother curve (took 0.10 sec)

Figure 1: Unlike GPR, after the initial training, the subsequent adjustments of the regression model
(e.g., to avoid overfitting/underfitting) can be performed almost immediately.

LATENTGP can then simply sum up those submodels to produce models with different smoothness36

levels.37

Figure 1 illustrates an example of the user interaction with LATENTGP. For the raw data depicted in38

Figure 1a, LATENTGP generates an initial regression curve shown in Figure 1b. Similar to GPR, the39

initial training of LATENTGP takes relatively long (i.e., 26 sec). After seeing the initial curve, the40

analyst may request a more data-sensitive curve or a smoother one. LATENTGP can generate each41

subsequent model almost immediately (Figure 1c and Figure 1d). The analyst can continue these42

adjustments until a desirable curve is obtained, without having to incur a significant cost for each43

adjustment.44

Summary of our approach LATENTGP decomposes GPR’s model into multiple components45

(i.e., submodels), each associated with a different smoothness level. According to the representer46

theorem [15], GPR’s model f(x) corresponds to a linear model in which each regressor is defined47

using the kernel κ(x,xi) (or equivalently, the covariance function) that involves a different training48

data point xi. LATENTGP expresses this model using an alternative set of regressors ui(x), each49

with a different smoothness:50

f(x) =

n∑
i=1

wi κ(x,xi)︸ ︷︷ ︸
GPR model

⇐⇒ f(x) =

n∑
i=1

αi ui(x)︸ ︷︷ ︸
LATENTGP model

(1)

where xi for i = 1, . . . , n are the training data points, wi for i = 1, . . . , n are the weighting51

parameters whose values are determined during GPR training, and αi for i = 1, . . . , n are the52

weighting parameters whose values are determined during LATENTGP training.253

By combining k number of regressors (i.e., u1(x), . . . , uk(x)), we obtain the k-th submodel of54

LATENTGP. The submodel associated with a larger k (or lower smoothness level) is more sensitive55

to the training data points. For example, the regression curve in Figure 1c is associated with a larger56

value of k than the regression curve in Figure 1d. While there are different approaches to obtaining57

such regressors, LATENTGP uses the following approach: it overloads the expression on the left side58

of Equation (1) with the kernel functions of different hyperparameters; then, orthogonal functions59

(which we call latent regressors) are extracted from these overloaded regressors. This allows the60

linear combination of these latent regressors to be able to express both smooth and data-sensitive61

patterns. Although this construction is different from standard GPR in which only a single type of62

kernel (i.e., with the same hyperparameters) is used, LATENTGP is still equivalent to a GPR model63

with a redefined kernel.64

2These weighting parameters are random variables with certain posterior distributions (see Section 2).

2



2 Background: Gaussian process regression65

Given a training set D that consists of n pairs of a zero-meaned input vector and an observation, i.e.,66

{(xi, yi) | i = 1, . . . , n}, Gaussian process regression (GPR) computes a posterior distribution based67

on the assumption that those n observations are noisy realizations of an underlying Gaussian process68

(GP) f . That is, yi = fi + εi where fi is the output of the GP for xi, and εi is a zero-mean Gaussian69

noise with variance σ2
n. The outputs of the GP, i.e., (f1, . . . , fn), jointly follow a multivariate normal70

distribution: (f1, . . . , fn) ∼ N (0, Kn,n), where Kn,n is a covariance matrix; the (i, j)-entry is the71

covariance between xi and xj . Typically, the covariance matrix is computed using a kernel function72

κ( · , · ) that returns the covariance between two data points.73

Let x∗ denote an unseen data point, and let f∗ be the unknown function output at x∗. Also, let S be a74

size-m subset of D. The data points in S are typically called inducing variables. Then, the posterior75

(or, the predictive) distribution of f∗ is expressed as:76

N
(
k>∗ A

−1K>n,m y, k>∗ A
−1 k∗

)
(2)

where A = K>n,mKn,m + σ2
nKm,m. Kn,m is the n-by-m covariance matrix between the data points77

in D and the data points in S, Km,m is the m-by-m covariance matrix of the data points in S, and k∗78

is the size-m column vector whose i-th element is the covariance between x∗ and the i-th element79

of S. If m = n, we call the above model full Gaussian process regression (or FullGP). If m < n,80

we call the above model sparse Gaussian process regression (or SparseGP). In the literature, this81

particular sparse GPR is referred to as the subset of regressors [12].82

Observe that the mean of Equation (2) can be viewed as a linear combination of the elements of83

k∗. Indeed, the posterior distribution of GPR is equivalent to solving the following Bayesian linear84

regression with random variables weights w = (w1, . . . , wm):85

f(x) = w1 κ(x,xi) + · · ·+ wm κ(x,xm) (3)

where w ∼ N (0,K−1m,m) [14]. That is, the posterior of w is N (A−1K>n,m y, A
−1).86

3 Gaussian process regression in latent space87

In this section, we first construct LATENTGP’s model, which consists of orthogonal non-linear88

regressors. Those orthogonal regressors are called latent regressors. Since these latent regressors89

are associated with varying smoothness levels, their linear combinations accordingly produce the90

models with different smoothness levels. Those individual models are called submodels to distinguish91

them from the LATENTGP itself. Then, we describe how to train those submodels and how to make92

inference using them.93

3.1 Latent regressors from standard Gaussian process regression94

We describe how to construct an alternative function fu containing orthogonal regressors (i.e., latent95

regressors) while retaining the same expressiveness as the one constructed using the kernels with m96

inducing variables (i.e., Equation (2)). That is,97

f(x) =

m∑
i=1

wi κ(x,xi)
expressivness⇐=====⇒ fu(x) =

m∑
i=1

αi ui(x) (4)

where ui(x) for i = 1, . . . ,m are the latent regressors, and α1, . . . , αm are their weights; α =98

(α1, . . . , αm) jointly follows a multivariate normal distribution N (0,Σα). We will discuss how to99

set Σα, shortly. The orthogonality of ui(x), for i = 1, . . . ,m, means100 ∫
ui(x)uj(x) p(x) dx = 0 for i 6= j.

where p(x) is the probability density function of data points.101

Like Nyström approximation for kernel matrices [24], we approximately obtain those m latent102

regressors using q (≥ m) number of randomly chosen data points, x′1, . . . ,x
′
q from D. That is, let103

Kq,m be the covariance matrix between those q data points and m inducing variables, and let k(x)104

3



be (κ(x,x1), . . . , κ(x,xm))>. Then, the following operation produces the values of those m latent105

regressors:106

u(x) = (u1(x), . . . , um(x)) = k(x)> V Λ−1/2 = k(x)> L (5)

where L := V Λ−1/2, V is a q-by-m matrix containing the right singular vectors of Kq,m in its107

columns, and Λ is a m-by-m diagonal matrix containing corresponding singular values in as its108

diagonal entires. Since k(x)> L is equivalent to U Λ1/2, where U is a q-by-m matrix containing left109

singular vectors of Kq,m in its columns, ui(x) and uj(x) in Equation (5) are orthogonal one another110

for i 6= j with respect to the q data points. That is, since Λ is a diagonal matrix,111

q∑
k=1

ui(x
′
k)uj(x

′
k) = (U Λ1/2)> (U Λ1/2) = Λi,j = 0 for i 6= j. (6)

There are no parametric expressions for u1(x), . . . , um(x); thus, their values must be obtained by112

first computing k(x), and then applying L. Note that in the traditional setting where all kernels113

in κ(x,x1), . . . , κ(x,xm) are associated with the same hyperparameters, U = V when q = m.114

However, we explicitly distinguish U and V because we will introduce kernels with different115

hyperparameters and will extract latent regressors from those heterogeneous kernels in Section 3.2.116

The following theorem shows how to set Σα so that the posterior distribution of f(x∗) and fu(x∗) in117

Equation (4) are identical.118

Theorem 1. Let u(x) = k(x)>L be an alternative feature vector using an invertible linear mapping119

L, i.e., L−1 L = LL−1 = I . Also, let Σα = L−1 Σw (L>)−1. Then, the following two models120

produce the same posterior distribution for an unseen data point x∗:121

f1(x) = k(x)>w, w ∼ N (0,Σw) (7a)

f2(x) = u(x)>α, α ∼ N (0,Σα) (7b)

The proof to the above theorem is in our supplementary material (Appendix A). If q = m,122

L−1K−1m,m (L>)−1 = I . Thus, setting Σα to the identity matrix makes f(x∗) and fu(x∗) pro-123

duce the same posterior distribution for x∗. Using an identity matrix for Σα, which is the covariance124

matrix of the prior distribution of α, is intuitive because we have ensured that those latent regressors125

to be orthogonal one another.126

3.2 Latent regressors from overloaded regressors127

Applying the approach described in Section 3, LATENTGP extracts latent regressors from the linear128

model with heterogeneous kernels. We call such a model overloaded regressors. Let κ( · , · ;h)129

indicate the kernel with hyperparameters h. Then, the overloaded regressors is defined, using the m130

inducing variables, as follows:131

f(x) =

m∑
i=1

∑̀
j=1

wi,j κ(x,xi;hj) (8)

where ` determines how many kernels are placed for each inducing variable. The above model132

construction permits any combinations of hj for j = 1, . . . , `. However, LATENTGP uses one133

specific approach described as follows. Let h0 denote the optimal (length-scale) hyperparameters134

obtained for SparseGP or FullGP. Then, LATENTGP sets hj = h0 × 2j−1. The kernels with135

larger j include larger hyperparameters; thus, they can capture smoother patterns in a dataset. Also,136

although it is non-trivial to directly find the posterior distribution of w = (w1,1, . . . , wm,`) due to137

the kernels with different hyperparameters,3 we can still extract latent regressors and alternatively138

train the weights of those latent regressors.139

Extracting latent regressors from overloaded regressors follows the similar procedure as in Section 3.140

That is, a covariance matrix Kq,m` is constructed by computing the kernels between q randomly-141

chosen data points and m inducing variables. The number of columns is now m` since ` different142

3The kernels no longer serve as covariance functions between pairs of data points.
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kernels are evaluated for each inducing variable. The orders of columns do not matter. Then, the143

values of latent regressors, u1(x), . . . , um(x), are computed as follows:144

u(x) = (u1(x), . . . , um(x)) = k`(x)> V` Λ
−1/2
` = k`(x)> L` (9)

where L` := V` Λ
−1/2
` , V` and Λ` are matrices for the right-singular vectors and the singular values145

of Kq,m`, respectively, and k`(x) is the output of the overloaded regressors for x. Those latent146

regressors are again orthogonal one another with respect to those q randomly-chosen data points (as147

in Equation (6)) due to the property of the singular value decomposition.148

3.3 Submodels149

Let the diagonal elements of Λ` and the columns of V` be sorted in the descending order of singular150

values. Then, due to the property of the singular value decomposition, the latent regressors associated151

with lower index numbers (e.g., u1(x)) tend to capture smoother orthogonal patterns in a dataset in152

comparison to the latent regressors with higher index numbers (e.g., u1000(x)). This is also the basic153

idea behind latent semantic analysis in natural language processing [4]. Exploiting this property,154

LATENTGP defines m submodels, fu1 (x), . . . , fum(x) as follows:155

fuk (x) =

k∑
j=1

αj uj(x) for k = 1, . . . ,m (10)

The submodels with lower index numbers (e.g., fu1 (x)) reveal smoother patterns in comparison to156

the submodels with higher index numbers (e.g., fu1000(x)). For convenience, (m− k)/m× 100% is157

called the smoothness level of fuk (x), which will be used when experiment results are reported.158

3.4 Training and inference159

Given the values of latent regressors (in Equation (9)), computing the posterior distribution of160

α = (α1, . . . , αm) and the posterior distribution of fuk (x∗) is straightforward. That is, the posterior161

distribution of α corresponds to the posterior distribution of Bayesian linear regression with feature162

matrix Kn,m`L` and α’s prior I:163

α | D ∼ N
(
A−1 (Kn,m` L`)

> y, A−1
)
, A = (Kn,m` L`)

>(Kn,m` L`) + σ2
nI (11)

Also, the posterior distribution of fk(x∗) is expressed as:164

fuk (x∗) | D ∼ N
(
k>∗ L` Ik/mA

−1 (Kn,m` L`)
> y, k>∗ L` Ik/mA

−1 Ik/m (k>∗ L`)
>) (12)

where Ik/m is an m×m matrix such that the first k rows and columns are from an identity matrix165

and all the other elements are zeros.166

Connection to GRP LATENTGP from overloaded regressors could be regarded as GPR with167

redefined covariance matrix K̂n,n between training data points as follows. First, suppose m = n,168

and let the singular value decomposition of Kn,n` be Û Λ̂V̂ >. Then, K̂n,n := Û Λ̂Û>. The k-th169

submodel of LATENTGP uses the first k columns of Û and corresponding diagonal elements in Λ̂. If170

m < n, LATENTGP corresponds to the sparse approximation of K̂n,n.171

3.5 Time complexity analysis172

We analyze the computational costs of LATENTGP. For training, LATENTGP performs the singular173

value decomposition of overloaded regressors. This process takes O(m2 `) for computing the values174

of overloaded regressors, and O(m (m`)2) = O(m3 `2) for the singular value decomposition. Next,175

LATENTGP computes the kernel values of overloaded regressors for all n training data points.176

This takes O(nm`) for computing kernel values and O(nm2 `) for computing the values of latent177

regressors. Finally, computing A−1 takes O(m2 n) for matrix multiplications and O(m3) for matrix178

inversion. Since m ≤ n, the total time complexity for training is O(m3 `2 + nm2 `).179

For inference, suppose there are t data points for which we need to compute the posterior distributions.180

Computing the values of overloaded regressors takes O(tm `), which is converted to the values181

of latent regressions at the cost of O(tm2 `). Since A−1 has been computed in the training stage,182

computing the mean of the posterior distribution takes O(tm). Computing the variance takes183

O(tm3). Thus, the total cost for inference is O(tm2 `+ tm3).184
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Figure 2: Numerical analysis of latent regressors and submodels. (a) Five randomly-chosen original
regressors, and (b) the first five latent regressors. For (a) and (b), the numbers in the legend indicate
the orders of the regressors. A latent regressor with a lower order number is associated with a higher
smoothness level. In (c), three submodels fitted to the unit step function are shown. Their smoothness
levels are in the legend.

4 Numerical evaluations185

In this section, we numerically analyze LATENTGP’s characteristics and evaluate its performance186

against the full Gaussian process regression (FullGP) and the sparse Gaussian process regression187

(SparseGP). First, the characteristics of LATENTGP’s latent regressors are studied in Section 4.1.188

Second, Section 4.2 compares the latencies of LATENTGP against SparseGP for each of three data189

analysts stages: (1) model training, (2) initial inference, and (3) smoothness adjustment. Third,190

Section 4.3 studies the errors of LATENTGP for various datasets and for various smoothness levels in191

comparison to FullGP and SparseGP. All methods were implemented and run in Matlab 2017b. All192

experiments were conducted on an 112-core (each 2.2 GHz) machine with 1,000 GB main memory.193

4.1 Characteristics of latent regressors194

To understand the characteristics of latent regressors, we visually analyze both original regressors195

and latent regressors. For this, we generated 10,000 uniform-random data points between 0 and 1.196

Each original regressor was defined using the squared exponential kernel with the same length-scale197

parameter. Figure 2a shows five randomly chosen original regressors. Since their length-scale198

parameters were identical, their shapes are basically identical. In Figure 2b, we visualize the first five199

latent regressors extracted from those original regressors. The first latent regressor (in black) is the200

smoothest function. As the order number associated with those latent regressors increases (from 1 to201

5), they vary more quickly, indicating their higher data-sensitivity. Naturally, LATENTGP’s submodel202

with a few low-ordered latent regressors only captures a smooth pattern, while its data sensitivity203

increases as more latent regressors are incorporated for training and inference.204

Figure 2c visualizes the submodels associated with different smoothness levels. In this figure,205

LATENTGP’s model was fit to the unit step function, and three submodels are depicted. Observe206

that the submodel with 99.5% smoothes out the abrupt change at 0, which implies its resilience207

against potential noisy fluctuations in raw data. As submodels’ smoothness levels decrease (e.g., 95%,208

50%), they now capture the abrupt change at 0. Since LATENTGP’s smoothness level adjustments209

are almost instant (Section 4.2), the user can interactively generate various submodels and choose a210

desirable one according to his/her needs.211

4.2 Runtime analysis212

In this section, we compare the latencies of LATENTGP against SparseGP. FullGP was also tested;213

however, its results are not reported since its training failed for all real-life datasets tested (either214

training did not finish within fours hours or out-of-memory errors occurred). The latencies are215

measured for each of the three data exploration steps: (1) model training, (2) initial inference, and (3)216

smoothness adjustment. The model training includes a hyperparameter optimization process. For217

finding the optimal hyperparameters, we used the state-of-the-art sparse GP optimization algorithm [2].218

LATENTGP used the same hyperparameters. Our experiments used the following five datasets (two219

synthetic and three real-life):220
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Table 1: Runtime comparison for each of the three data exploration steps: (1) training with hyperpa-
rameter tuning, (2) initial inference, and (3) smoothness adjustment.

Training (sec) Initial inference (sec) Smoothness adjustment (sec)

Dataset SparseGP LATENTGP SparseGP LATENTGP SparseGP LATENTGP

step 1.68 2.04 0.0205 0.1372 0.0308 0.0019
gaussian 18.3 19.4 0.0124 0.2831 0.0650 0.0034
kin40K 2527.3 2539.5 0.0306 2.2730 1.0017 0.0300
flight 193.4 195.1 0.0083 0.1934 0.1069 0.0026
combustion 29587.6 29836.0 0.0267 2.9733 17.879 0.0207

1. step: This is a one-dimensional unit-step function. This dataset is typically used to examine how221

well a regression model behaves with the occurrence of abrupt changes. 600 points were used for222

training, and 1,800 points were used for testing.223

2. gaussian: This is a mixture of five two-dimensional normal distributions (with different values224

of covariance matrices). We used this as an example of a dataset that is comprised of multiple225

subgroups with different characteristics. 1,000 points were used for training, and 3,000 points were226

used for testing.227

3. kin40K: This is a medium-sized (40K points) multivariate dataset commonly used for testing GPR228

(e.g., [2]). The dataset contains forward kinematics of a robot arm. 30K points were used for229

training and 10K points were used for testing.230

4. flight: This is another medium-sized (10K points) multivariate dataset commonly used for231

testing GPR (e.g., [9]). The dataset contains US flight delays. 7,900 points were used for training,232

and 1,100 points were used for testing.233

5. combustion: This is a large-scale dataset (about 200K data points) obtained from a turbulent234

combustion experiment [25]. Input variables are physical properties and the output variable is the235

speed of air flux. 200K points were used for training, and 3,000 points were used for testing.236

All datasets were normalized to set their means equal to zero and their standard deviations equal to237

one. For both SparseGP and LATENTGP, the number of inducing variables was set to min(n, 1000),238

where n is the number of data points in the training set. For LATENTGP, the value of q (i.e., the239

number of random data points used for extracting latent regressors) was set equal to m, and ` (i.e.,240

the number of kernels placed on each inducing variable) was set to 10.241

Table 1 summarizes the results. In the training step, the hyperparameter optimization made up a242

significant portion of the runtime for both LATENTGP and SparseGP. When the size of the datasets243

were larger than 10K (i.e., kin40K and combustion), the training took more than 40 mins and244

8 hours, respectively. However, the hyperparameter optimization is performed using some pre-245

determined criteria (e.g., marginal likelihood, cross validation, etc.); thus, immediate user responses246

are less needed.247

For the other two steps (i.e., initial inference and smoothness adjustment), more interactive responses248

are needed. The reported latencies are the inference times for all test data points (e.g., 10K points249

for kin40K). LATENTGP’s initial inference was slower than SparseGP due to its extra kernel250

evaluations (i.e., m` instead of m). However, once the initial inference was finished, LATENTGP251

could generate subsequent regression curves almost immediately for all datasets. For a large dataset252

(i.e., combustion), SparseGP took about 17 seconds for every smoothness adjustment, while253

LATENTGP took only 0.02 seconds (i.e., 860× faster). In the following section, we study the quality254

of those regression curves with different smoothness levels.255

4.3 Error analysis256

In this section, we study the quality of LATENTGP’s inference. First, we evaluate LATENTGP’s257

quality when all its latent regressors are used. Second, we evaluate the quality of LATENTGP’s258

submodels (associated with different smoothness levels) against SparseGP (also associated with259

corresponding smoothness levels).260

First, we analyze LATENTGP’s inference quality when all of its latent regressors are used. We used261

the same five datasets described in the previous section. All the same hyperparameter values were262
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Figure 3: The quality of LATENTGP’s inference for different datasets and smoothness levels. The
quality was measured using the root-mean-square error against the groudtruth.

used for FullGP, SparseGP, and LATENTGP. The root-mean-square errors were used for evaluating263

the quality of inferences. Figure 3a shows the results. In general, FullGP’s errors were slightly lower264

than others. In all cases, the errors of SparseGP and LATENTGP were comparable.265

Second, we analyze the quality of LATENTGP’s submodels associated with different smoothness266

levels. Note that as the smoothness level increases, the error is expected to increase as well (since267

the regression curve is less data-sensitive). However, it would be desirable to minimize those error268

increments for a certain smoothness level. Note that LATENTGP’s smoothness level does not directly269

correspond to a SparseGP’s model associated with certain hyperparameters. However, for this270

evaluation, we could still generate the SparseGP’s model associated with a similar smoothness level271

by manually inspecting many different SparseGP models. Find those curves in our supplementary272

material (Appendix B). Figure 3b reports the errors of two models (by LATENTGP and SparseGP)273

associated with similar smoothness levels. Their errors were almost identical when the associated274

smoothness levels were similar. This indicates that the quality of LATENTGP’s submodels are275

quantitatively (almost) equivalent to the individually trained SparseGP’s models.276

5 Related work277

Due to the prohibitive nature of GPR, there has been significant research on sparse approximations278

of GPR [1], including well known methods such as Subset of Data, Subset of Regressors [17, 18,279

22], Deterministic Training Conditional [3, 16], Fully Independent Training Conditional [19], and280

Nyström method [10]. The relationship between these different approaches has been studied in [12].281

LATENTGP is different from these methods in its model construction and inference mechanism (which282

uses latent regressors). LATENTGP’s approach enables interactive-speed smoothness adjustments for283

GPR, which has not been pursued by previous work.284

LATENTGP’s model construction involves regressors (or equivalently, kernels) with different hyper-285

parameters. This idea has been used for a different purpose to better represent data whose properties286

differ in its sub-groups. For example, non-stationary kernels [11] assume that there exists a smooth287

function that returns a hyperparameter at every location. Walder et al. also study GPR in a similar288

setting [23]. These methods aim at a better modeling of heterogeneous datasets, a goal pursued by289

many others as well [5, 7, 13, 20]. Lastly, enabling efficient inference for new Gaussian process290

models is also a popular topic in the literature [6, 8, 21].291

6 Conclusion292

This work has proposed Gaussian process regression in latent space (LATENTGP), which enables293

real-time smoothness adjustments of regression curves. Rather than requiring a hyperparameter294

update and model retraining, LATENTGP adjusts smoothness levels by combining a different set295

of latent regressors. Our experiments showed that the quality of LATENTGP’s regression curves is296

comparable to the regression curves obtained by manually adjusting the hyperparameters of standard297

Gaussian process regression. Despite LATENTGP’s slightly longer initial training, its ability to298

adjust regression curves almost instantly could make it an appealing choice for modern machine299

learning-enabled data analytics systems.300
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Supplementary Materials to356

“Gaussian Process Regression in Latent Space”357

A Proof to a theorem358

Theorem 1. Let u(x) = L>k(x) be an alternative feature vector using an invertible linear mapping359

L, i.e., L−1 L = LL−1 = I . Also, let Σα = L−1 Σw (L>)−1. Then, the following two GP models360

produce the same posterior distribution for an unseen data point x∗:361

f1(x) = k(x)>w, w ∼ N (0,Σw) (13a)

f2(x) = u(x)>α, α ∼ N (0,Σα) (13b)

362

Observe that the above theorem does not assume any properties of feature-generating functions. Thus,363

its result is applicable even if a model includes multiple hyperparameters when defining its regressors.364

Proof of Theorem 1. We derive the mean and the variance of the posterior distribution of the model365

in Equation (13b), and show that the derived mean and variance are equivalent to the mean and366

variance for Equation (13a), which is given in Equation (2). Since a normal distribution is sufficiently367

described by its mean and variance, the equivalence of those mean and variance shows the identity of368

two posterior distributions.369

Let Û be a n×m matrix such that Û = KL. Recall that K contains k(xi)
> in its i-th row. First, we370

show the equivalence of means.371

E[f2(x)] =
1

σ2
n

u(x∗)
>
(

1

σ2
n

Û>Û + Σ−1α

)−1
Û> y

=
1

σ2
n

k(x∗)
>L

(
1

σ2
n

L>K>KL+ L>Σ−1w L

)−1
L>K> y

=
1

σ2
n

k(x∗)
>L

[
L>
(

1

σ2
n

K>K + Σ−1w

)
L

]−1
L>K> y

=
1

σ2
n

k(x∗)
>LL−1

(
1

σ2
n

K>K + Σ−1w

)−1
(L>)−1L>K> y

=
1

σ2
n

k(x∗)
>
(

1

σ2
n

K>K + Σ−1w

)−1
K> y = E[f1(x)]

Next, we show the equivalence of variances.372

V ar[f2(x)] = u(x∗)
>
(

1

σ2
n

Û>Û + Σ−1α

)−1
u(x∗)

= k(x∗)
>L

(
1

σ2
n

L>K>KL+ L> Σ−1w L

)−1
L>k(x∗)

= k(x∗)
>
(

1

σ2
n

K>K + Σ−1w

)−1
k(x∗) = V ar[f1(x)]

for which we used the same property of matrix inversion as used for showing the equivalence of the373

means.374
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B Regression curves used in Figure 3b375

We show the regression curves of SparseGP and LATENTGP used in our error analysis experiment376

(Figure 3b). For comparison, we juxtapose their regression curves side by side, with associated377

hyperparameter settings. The raw data used for fitting those curves are only displayed on the first378

figure, for visual clearance. For this experiment, we used an energy-consumption time-series data.4379
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(a) SparseGP, h = 13.388
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(b) LATENTGP, k = 1000

Figure 4: Curves with a similar smoothness level (0%).
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(a) SparseGP, h = 20.082
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(b) LATENTGP, k = 500

Figure 5: Curves with a similar smoothness level (50%).
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(a) SparseGP, h = 40.164

0 2000 4000 6000
−2

0

2

4

6

E
ne

rg
y

C
on

su
m

pt
io

n

(b) LATENTGP, k = 200

Figure 6: Curves with a similar smoothness level (80%).

4https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+
consumption

12

https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption


0 2000 4000 6000
−2

0

2

4

6

E
ne

rg
y

C
on

su
m

pt
io

n

(a) SparseGP, h = 99.940
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(b) LATENTGP, k = 100

Figure 7: Curves with a similar smoothness level (90%).
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(a) SparseGP, h = 160.656
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(b) LATENTGP, k = 50

Figure 8: Curves with a similar smoothness level (95%).
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(a) SparseGP, h = 535.520
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(b) LATENTGP, k = 20

Figure 9: Curves with a similar smoothness level (98%).
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(a) SparseGP, h = 669.400
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(b) LATENTGP, k = 10

Figure 10: Curves with a similar smoothness level (99%).
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