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AQP is hard to adopt
AQP typically requires significant modifications of DBMS internals

• Error estimation: [BlinkDB ‘13], [G-OLA ’15], …

• Query evaluation: [Online ‘97], [Join Synopses ‘99], ...

• Relational operators: [ABM ‘14], …

Users won’t abandon their existing DBMS just to use AQP.

Newer SQL-on-Hadoop systems: implementing standard features

Traditional DBMS vendors
• Stable codebase, reluctant to make major changes

• Slow in adopting ANYTHING  :-)



Built-in AQP functions in OLAP engines

APPROXIMATE 
PERCENTILE_DISC

approxCountDistinct
approxQuantile

NDV
APX_MEDIAN

approx_count_distinct
approx_percentile

count-distinct     or     quantile



Built-in AQP functions in OLAP engines

count-distinct     or     quantile Good progress! 
But, too little, too slow

APPROXIMATE 
PERCENTILE_DISC

approxCountDistinct
approxQuantile

NDV
APX_MEDIAN

approx_count_distinct
approx_percentile



Built-in AQP functions in OLAP engines

Limitations

count-distinct     or     quantile

APPROXIMATE 
PERCENTILE_DISC

approxCountDistinct
approxQuantile

NDV
APX_MEDIAN

approx_count_distinct
approx_percentile

1. Good only when the data does not fit in memory
2. Good only for flat queries: no error propagation
3. Applicable only for order statistics: no support for UDAs or arithmetic aggregates

Good progress! 
But, too little, too slow



Built-in AQP functions in OLAP engines

Limitations

count-distinct     or     quantile

Need for complete AQP solutions that are easy to adopt

1. Good only when the data does not fit in memory
2. Good only for flat queries: no error propagation
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VerdictDB Overview

First Universal AQP system
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user/app SQL DB

JDBC,
spark.sql

Stores (1) offline-created samples, and (2) VerdictDB-managed metadata

The only requirements:
• create table as select …
• rand(), agg(col) over (partition by …)

supported by
almost any SQL engines

JDBC,
API call
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Architecture

VerdictDB

Query 
Parser

Query 
Rewriter

DBMS
Drivers

Hive driver

Redshift driver
Answer
Rewriter

incoming query

approximate
answer

Crucial component
1. Chooses an optimal set of samples
2. Scales values appropriately
3. Inserts an error estimation logic

SQL DB

Impala driver
…



Error estimation in 
VerdictDB



Error estimation in general
User interested in Q(T)

We compute Q(S) where S is a sample of T



Error estimation in general

Main question: how close is Q(S) to Q(T)?

User interested in Q(T)

We compute Q(S) where S is a sample of T



Error estimation in general

Fast? General?

Closed-form
(CLT, Hoeffding, HT) YES NO

(no UDAs, requires IID)

Existing Resampling
(subsampling, bootstrap)

NO
(can be slow in SQL)

YES
(Hadamard differentiable)

Ours
(variational subsampling) YES YES

(Hadamard differentiable)

Main question: how close is Q(S) to Q(T)?

User interested in Q(T)

We compute Q(S) where S is a sample of T



Error estimation in general

Fast? General?

Closed-form
(CLT, Hoeffding, HT) YES NO

(no UDAs)

Existing Resampling
(subsampling, bootstrap)

NO
(can be slow in SQL)

YES
(Hadamard differentiable)

Ours
(variational subsampling) YES YES

(Hadamard differentiable)

Main question: how close is Q(S) to Q(T)?

User interested in Q(T)

We compute Q(S) where S is a sample of T



Error estimation in general

Fast? General?

Closed-form
(CLT, Hoeffding, HT) YES NO

(no UDAs)

Existing Resampling
(subsampling, bootstrap)

NO
(can be slow in SQL)

YES
(Hadamard differentiable)

Ours
(variational subsampling) YES YES

(Hadamard differentiable)

Main question: how close is Q(S) to Q(T)?

User interested in Q(T)

We compute Q(S) where S is a sample of T



Error estimation in general

Fast? General?

Closed-form
(CLT, Hoeffding, HT) YES NO

(no UDAs)

Existing Resampling
(subsampling, bootstrap)

NO
(can be slow in SQL)

YES
(Hadamard differentiable)

Ours
(variational subsampling) YES YES

(Hadamard differentiable)

Main question: how close is Q(S) to Q(T)?

User interested in Q(T)

We compute Q(S) where S is a sample of T



Recap: traditional subsampling

T
Original Table

(size N)

Q(T) is slow / expensive



Recap: traditional subsampling

T
Original Table

(size N)

S
sample
(size n)

random sample

What is the error of Q(S)?



Recap: traditional subsampling

T
Original Table

(size N)

S
sample
(size n)

s2 sbs1 · · ·s3
subsample
(size s ≪ n)

random sample

What is the error of Q(S)?



Recap: traditional subsampling

Random sample without replacement

Each subsample is independent
T

Original Table
(size N)

S
sample
(size n)

s2 sbs1 · · ·s3
subsample
(size s ≪ n)

random sample

What is the error of Q(S)?



Recap: traditional subsampling

T
Original Table

(size N)

S
sample
(size n)

s2 sbs1 · · ·s3
subsample
(size s ≪ n)

random sample

Q(s1) Q(s2) Q(s3) Q(sb)

What is the error of Q(S)?



Recap: traditional subsampling

T
Original Table

(size N)

S
sample
(size n)

s2 sbs1 · · ·s3
subsample
(size s ≪ n)

random sample

What is the error of Q(S)?

Q(s1) Q(s2) Q(s3) Q(sb)
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ST
Original Table

(size N)

sample
(size n)

s2 sbs1 · · ·s3
subsample
(size s ≪ n)

random sample

Important properties

1. A tuple may belong to 
multiple subsamples.

2. The size of
every subsample is s.

What is the error of Q(S)?

Q(s1) Q(s2) Q(s3) Q(sb)
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CITY PRODUCT PRICE 1 2 · · · b
AA egg $3.00 1 0 1
AA milk $5.00 0 1 0
AA egg $3.00 0 0 1
NYU egg $4.00 0 1 0
NYU milk $6.00 0 0 1
NYU candy $2.00 1 0 0
SF milk $6.00 0 1 0
SF egg $4.00 0 0 0
SF egg $4.00 0 1 1

subsample	 ID

n	
		t
up
le
s

Algorithm:
for i = 1, ..., n
for j = 1, ..., b

if sid[i,j] == 1
sum[j] += price[i]

Time Complexity: O(n·b)

No error est: 0.35 sec
Trad. subsampling: 118 sec
337x slower

(based	on	1G	sample,	Impala)
sum = s sum = s
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Our approach: variational subsampling

T S
sample
(size n)

s2 sbs1 · · ·s3

random
sample

(size n1) (size n2) (size n3) (size nb)

Important properties
1. A tuple may belong to multiple 

subsamples.
Each sampled tuple can belong to 
at most one subsample

2. The size of
every subsample is s.
Allow subsamples to differ in size.

Can be implemented in SQL
as a single group-by query!
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Variational subsampling in SQL is fast

CITY PRODUCT PRICE subsample ID
AA egg $3.00 1
AA milk $5.00 3
AA egg $3.00 2
NYU egg $4.00 4
NYU milk $6.00 3
NYU candy $2.00 1
SF milk $6.00 5
SF egg $4.00 4
SF egg $4.00 5

n	
		t
up
le
s

randint(1,b)
Algorithm:
for i = 1, ..., n
sum[sid] += price[i]

Time Complexity: O(n)

No error est: 0.35 sec
Trad. subsampling: 118 sec
Var. subsampling: 0.73 sec
162× faster than traditional

We call this augmented table, a variational table
(based	on	1G	sample,	Impala)
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Main results

Theorem 1 (Consistency) The distribution of the aggregates of variational 
subsamples, after appropriate scaling, converges to the true distribution of the 
aggregate of a sample as 𝑛 → ∞.

Theorem 2 (Convergence Rate) The convergence rate of variational subsampling 
is equal to that of traditional subsampling when b is finite.

𝑂 𝑛%
&'/) +

𝑛%
𝑛 + 𝑏&'/)

The error term from the finite b
(The Dvoretzky–Kiefer–Wolfowitz inequality) 
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Experiments

Datasets:
• 500GB TPC-H benchmark  /  200GB Instacart dataset  / synthetic datasets

Underlying databases
• Amazon Redshift, Apache Spark SQL, Apache Impala on 10+1 r4.xlarge cluster

1. Does VerdictDB provide enough speedup?

2. Is VerdictDB (UAQP)’s performance comparable 

to a tightly-integrated AQP engine?

3. Is variational subsampling statistically correct?

Yes
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Speedup for Redshift

t3, t10, t15: no speedup (i.e., 1×) due to high-cardinality grouping attributes

Other queries: 26.3× speedups (relative errors were 2%)

tpc-h benchmark micro-benchmark

Redshift 24.0× Speedup



Speedup for Apache Spark & Impala
Spark SQL 12.0× Speedup

Impala 18.6× Speedup



Speedup for Apache Spark & Impala

speedup = 
overhead + processing

overhead + (sample processing)

Lower overhead  →
Larger speedup

Spark SQL 12.0× Speedup

Impala 18.6× Speedup
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UAQP vs. Tightly-integrated AQP

VerdictDB was comparable to SnappyData.

SnappyData ver 0.8 didn’t support the join of two sample tables.
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Variational subsampling: correctness
The bars are 5th and 95th percentiles.Rel. err. naturally become smaller for higher selectivity.

The accuracy of var. subsampling ≈ (a) bootstrap and (b) trad. subsampling

The estimated errors close to true errors.
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Variational subsampling: convergence rate

Variational subsampling was significantly faster.

The accuracy was almost the same for relatively large samples.
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Conclusion: Universal AQP is viable

1. Comparable performance to a fully-integrated solution

2. New error estimation technique: variational subsampling

1. Generality and computational efficiency

2. The first subsampling-based error estimation technique for AQP

3. Offers considerable speedup 
(18.45× on average, up to 171×, less than 2-3% errors)

Open-sourced (Apache v2.0):  http://verdictdb.org
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Future Work

• Adding more drivers (Presto, Teradata, Oracle, SQL Server, …)

Development

• Support for online sampling

• Robust physical designer (see CliffGuard @ SIGMOD 15)

• Integration with ML libraries (sampling-based model tuning)

Research



Thank You

http://verdictdb.org
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Example of query rewriting

select l_returnflag , count (*) as cc
from lineitem
group by l_returnflag ;

select vt1 .` l_returnflag ` AS `l_returnflag `,
round ( sum (( vt1 .`cc ` * vt1 .` sub_size `)) / sum ( vt1 .` sub_size `)) AS `cc `, 

(stddev ( vt1 .` count_order `) * sqrt ( avg ( vt1 .` sub_size `))) 
/ sqrt ( sum ( vt1 .` sub_size `)) AS `cc_err `

from (select vt0 .` l_returnflag ` AS `l_returnflag `,
(( sum ((1.0 / vt0 .` sampling_prob `)) / count (*))
* sum ( count (*)) OVER ( partition BY vt0 .` l_returnflag `)) AS `cc `,
vt0 .`sid ` AS `sid `, count (*) AS `sub_size `

from lineitem_sample vt0 
GROUP BY vt0 .` l_returnflag `, vt0 .`sid `) AS vt1

GROUP BY vt1 .` l_returnflag `;

original

rewritten
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Variational subsampling: overhead

Variational subsampling was 100×–237× faster compared to 
Consolidated Bootstrap.

Overhead of variational subsampling: 0.38–0.87 seconds


