
Universalizing
Approximate Query Processing

Yongjoo Park Barzan Mozafari
Joseph Sorenson Junhao Wang

Universal
Approximate Query Processing

Universal
Approximate Query Processing

What is Approximate Query Processing (AQP)?

I/O Computation Exact Answer

What is Approximate Query Processing (AQP)?

I/O

Less I/O

Computation

Less Computation Approximate Answer

Exact Answer

Why AQP?

Higher Productivity

Numerous studies:

A latency >2 seconds is no longer interactive and negatively affects creativity!

Why AQP?

Higher Productivity

Numerous studies:

A latency >2 seconds is no longer interactive and negatively affects creativity!

Human time: Money

Machine time: No one loves their EC2 bill!

Lower Cost (Time + Resources)

Why AQP?

Higher Productivity

Numerous studies:

A latency >2 seconds is no longer interactive and negatively affects creativity!

Human time: Money

Machine time: No one loves their EC2 bill!

Lower Cost (Time + Resources)

Jeff Bezos

AQP research in academia

1985 1990 1995 2000 2005 2010 2015 2020

DBLearning

QuickR,
Seek+Sample,
Wander join

BlinkDB

SciBORQ

MapReduce Online,
COSMOS

Optimized stratified,
Scalable with DBO

SMS join

Bootsrap
for AQP

Dynamic sample
selection

STRAT

AQUA,
Ripple join

Online
aggregation

Approximate
count estimator

Selectivity estimation
on random samples

Double
sampling

1984

1991

1996

1997

1999

2001

2005

2003

2006

2007

2010

2011

2013

2017

2016

AQP research in academia

1985 1990 1995 2000 2005 2010 2015 2020

DBLearning

QuickR,
Seek+Sample,
Wander join

BlinkDB

SciBORQ

MapReduce Online,
COSMOS

Optimized stratified,
Scalable with DBO

SMS join

Bootsrap
for AQP

Dynamic sample
selection

STRAT

AQUA,
Ripple join

Online
aggregation

Approximate
count estimator

Selectivity estimation
on random samples

Double
sampling

1984

1991

1996

1997

1999

2001

2005

2003

2006

2007

2010

2011

2013

2017

2016

35 years of research, little industry adoption

AQP is hard to adopt
AQP typically requires significant modifications of DBMS internals

• Error estimation: [BlinkDB ‘13], [G-OLA ’15], …

• Query evaluation: [Online ‘97], [Join Synopses ‘99], ...

• Relational operators: [ABM ‘14], …

AQP is hard to adopt

Traditional DBMS vendors
• Stable codebase, reluctant to make major changes

• Slow in adopting ANYTHING :-)

AQP typically requires significant modifications of DBMS internals
• Error estimation: [BlinkDB ‘13], [G-OLA ’15], …

• Query evaluation: [Online ‘97], [Join Synopses ‘99], ...

• Relational operators: [ABM ‘14], …

AQP is hard to adopt
AQP typically requires significant modifications of DBMS internals

• Error estimation: [BlinkDB ‘13], [G-OLA ’15], …

• Query evaluation: [Online ‘97], [Join Synopses ‘99], ...

• Relational operators: [ABM ‘14], …

Newer SQL-on-Hadoop systems: implementing standard features

Traditional DBMS vendors
• Stable codebase, reluctant to make major changes

• Slow in adopting ANYTHING :-)

AQP is hard to adopt
AQP typically requires significant modifications of DBMS internals

• Error estimation: [BlinkDB ‘13], [G-OLA ’15], …

• Query evaluation: [Online ‘97], [Join Synopses ‘99], ...

• Relational operators: [ABM ‘14], …

Users won’t abandon their existing DBMS just to use AQP.

Newer SQL-on-Hadoop systems: implementing standard features

Traditional DBMS vendors
• Stable codebase, reluctant to make major changes

• Slow in adopting ANYTHING :-)

Built-in AQP functions in OLAP engines

APPROXIMATE
PERCENTILE_DISC

approxCountDistinct
approxQuantile

NDV
APX_MEDIAN

approx_count_distinct
approx_percentile

count-distinct or quantile

Built-in AQP functions in OLAP engines

count-distinct or quantile Good progress!
But, too little, too slow

APPROXIMATE
PERCENTILE_DISC

approxCountDistinct
approxQuantile

NDV
APX_MEDIAN

approx_count_distinct
approx_percentile

Built-in AQP functions in OLAP engines

Limitations

count-distinct or quantile

APPROXIMATE
PERCENTILE_DISC

approxCountDistinct
approxQuantile

NDV
APX_MEDIAN

approx_count_distinct
approx_percentile

1. Good only when the data does not fit in memory
2. Good only for flat queries: no error propagation
3. Applicable only for order statistics: no support for UDAs or arithmetic aggregates

Good progress!
But, too little, too slow

Built-in AQP functions in OLAP engines

Limitations

count-distinct or quantile

Need for complete AQP solutions that are easy to adopt

1. Good only when the data does not fit in memory
2. Good only for flat queries: no error propagation
3. Applicable only for order statistics: no support for UDAs or arithmetic aggregates

APPROXIMATE
PERCENTILE_DISC

approxCountDistinct
approxQuantile

NDV
APX_MEDIAN

approx_count_distinct
approx_percentile

Good progress!
But, too little, too slow

Our proposal: Universal AQP

user/app SQL DB

Exact
Result

SQL

Our proposal: Universal AQP

SQL DB

Thin AQP layer

A
Q
P

user/app

Our proposal: Universal AQP

SQL DB

Thin AQP layer

A
Q
P

user/app

select avg(price)
from sales
where channel = ‘online’

SQL

Our proposal: Universal AQP

user/app SQL DB

Thin AQP layer

select avg(price)
from sales
where channel = ‘online’

A
Q
P

SQL Rewritten
SQL

select avg(a1), std(a1)
from (
select avg(price) as a1
from sales
where channel = ‘online’
group by sid) t1

Our proposal: Universal AQP

SQL DB

Thin AQP layer

A
Q
P

SQL

Exact
Result

Approx Result
+ Error Bound

Rewritten
SQL

select avg(a1), std(a1)
from (
select avg(price) as a1
from sales
where channel = ‘online’
group by sid) t1

user/app

select avg(price)
from sales
where channel = ‘online’

Our proposal: Universal AQP

SQL DB

Thin AQP layer

A
Q
P

SQL

Exact
Result

Approx Result
+ Error Bound

Rewritten
SQL

select avg(a1), std(a1)
from (
select avg(price) as a1
from sales
where channel = ‘online’
group by sid) t1

user/app

select avg(price)
from sales
where channel = ‘online’

Our proposal: Universal AQP

SQL
SQL DB

Exact
Result

Approx Result
+ Error Bound

Rewritten
SQL

Thin AQP layer

select avg(a1), std(a1)
from (
select avg(price) as a1
from sales
where channel = ‘online’
group by sid) t1

Universal AQP

A
Q
P

user/app

select avg(price)
from sales
where channel = ‘online’

Challenges of Universal AQP

1. Statistical correctness (inter-tuple correlations)
• Foreign-key constraints [Join Synopses ‘99]

• Modifying the join algorithm [Wander Join ‘16]

• Modifying the query plan [BlinkDB ‘13, Quickr ‘16]

2. Middleware efficiency
• Lack of access to DBMS machinery

3. Server efficiency
• Resampling-based techniques [Pol and Jermaine ‘05, BlinkDB ‘14]

• Intimate integration of err est. logic into scan operators [Quickr ‘16, SnappyData]

• Overriding the relational operators altogether [ABM ‘14]

Challenges of Universal AQP

1. Statistical correctness (inter-tuple correlations)
• Foreign-key constraints [Join Synopses ‘99]

• Modifying join algorithm [Wander Join ‘16]

• Modifying the query plan [Quickr ‘16]

2. Middleware efficiency
• Lack of access to DBMS machinery

3. Server efficiency
• Resampling-based techniques [Pol and Jermaine ‘05, BlinkDB ‘14]

• Intimate integration of err est. logic into scan operators [Quickr ‘16, SnappyData]

• Overriding the relational operators altogether [ABM ‘14]

sa
le

AA NYC SF

correct error bounds

Challenges of Universal AQP

1. Statistical correctness (inter-tuple correlations)
• Foreign-key constraints [Join Synopses ‘99]

• Modifying join algorithm [Wander Join ‘16]

• Modifying the query plan [Quickr ‘16]

2. Middleware efficiency
• Lack of access to DBMS machinery

3. Server efficiency
• Resampling-based techniques [Pol and Jermaine ‘05, BlinkDB ‘14]

• Intimate integration of err est. logic into scan operators [Quickr ‘16, SnappyData]

• Overriding the relational operators altogether [ABM ‘14]

Thin
AQP
Layer

network

Challenges of Universal AQP

1. Statistical correctness (inter-tuple correlations)
• Foreign-key constraints [Join Synopses ‘99]

• Modifying join algorithm [Wander Join ‘16]

• Modifying the query plan [Quickr ‘16]

2. Middleware efficiency
• Lack of access to DBMS machinery

3. Server efficiency
• Resampling-based techniques [Pol and Jermaine ‘05, BlinkDB ‘14]

• Intimate integration of err est. logic into scan operators [Quickr ‘16, SnappyData]

• Overriding the relational operators altogether [ABM ‘14]

VerdictDB Overview

First Universal AQP system

Deployment

VerdictDB

user/app SQL DB

Deployment

VerdictDB

JDBC,
API call

user/app SQL DB

Deployment

VerdictDB

JDBC,
API call

user/app SQL DB

JDBC,
spark.sql

Deployment

VerdictDB

user/app SQL DB

JDBC,
spark.sql

JDBC,
API call

Stores (1) offline-created samples, and (2) VerdictDB-managed metadata

Required SQL syntax:
• create table as select …
• rand(), agg(col) over (partition by …)

Deployment

VerdictDB

user/app SQL DB

JDBC,
spark.sql

JDBC,
API call

Stores (1) offline-created samples, and (2) VerdictDB-managed metadata

The only requirements:
• create table as select …
• rand(), agg(col) over (partition by …)

Deployment

VerdictDB

user/app SQL DB

JDBC,
spark.sql

Stores (1) offline-created samples, and (2) VerdictDB-managed metadata

The only requirements:
• create table as select …
• rand(), agg(col) over (partition by …)

supported by
almost any SQL engines

JDBC,
API call

Architecture

VerdictDB

Query
Parser

Query
Rewriter

DBMS
Drivers

Impala driver

Hive driver

Redshift driver
Answer
Rewriter

incoming query

approximate
answer SQL DB

…

Architecture

VerdictDB

Query
Parser

Query
Rewriter

DBMS
Drivers

Hive driver

Redshift driver
Answer
Rewriter

incoming query

approximate
answer

Crucial component
1. Chooses an optimal set of samples
2. Scales values appropriately
3. Inserts an error estimation logic

SQL DB

Impala driver
…

Error estimation in
VerdictDB

Error estimation in general
User interested in Q(T)

We compute Q(S) where S is a sample of T

Error estimation in general

Main question: how close is Q(S) to Q(T)?

User interested in Q(T)

We compute Q(S) where S is a sample of T

Error estimation in general

Fast? General?

Closed-form
(CLT, Hoeffding, HT) YES NO

(no UDAs, requires IID)

Existing Resampling
(subsampling, bootstrap)

NO
(can be slow in SQL)

YES
(Hadamard differentiable)

Ours
(variational subsampling) YES YES

(Hadamard differentiable)

Main question: how close is Q(S) to Q(T)?

User interested in Q(T)

We compute Q(S) where S is a sample of T

Error estimation in general

Fast? General?

Closed-form
(CLT, Hoeffding, HT) YES NO

(no UDAs)

Existing Resampling
(subsampling, bootstrap)

NO
(can be slow in SQL)

YES
(Hadamard differentiable)

Ours
(variational subsampling) YES YES

(Hadamard differentiable)

Main question: how close is Q(S) to Q(T)?

User interested in Q(T)

We compute Q(S) where S is a sample of T

Error estimation in general

Fast? General?

Closed-form
(CLT, Hoeffding, HT) YES NO

(no UDAs)

Existing Resampling
(subsampling, bootstrap)

NO
(can be slow in SQL)

YES
(Hadamard differentiable)

Ours
(variational subsampling) YES YES

(Hadamard differentiable)

Main question: how close is Q(S) to Q(T)?

User interested in Q(T)

We compute Q(S) where S is a sample of T

Error estimation in general

Fast? General?

Closed-form
(CLT, Hoeffding, HT) YES NO

(no UDAs)

Existing Resampling
(subsampling, bootstrap)

NO
(can be slow in SQL)

YES
(Hadamard differentiable)

Ours
(variational subsampling) YES YES

(Hadamard differentiable)

Main question: how close is Q(S) to Q(T)?

User interested in Q(T)

We compute Q(S) where S is a sample of T

Recap: traditional subsampling

T
Original Table

(size N)

Q(T) is slow / expensive

Recap: traditional subsampling

T
Original Table

(size N)

S
sample
(size n)

random sample

What is the error of Q(S)?

Recap: traditional subsampling

T
Original Table

(size N)

S
sample
(size n)

s2 sbs1 · · ·s3
subsample
(size s ≪ n)

random sample

What is the error of Q(S)?

Recap: traditional subsampling

Random sample without replacement

Each subsample is independent
T

Original Table
(size N)

S
sample
(size n)

s2 sbs1 · · ·s3
subsample
(size s ≪ n)

random sample

What is the error of Q(S)?

Recap: traditional subsampling

T
Original Table

(size N)

S
sample
(size n)

s2 sbs1 · · ·s3
subsample
(size s ≪ n)

random sample

Q(s1) Q(s2) Q(s3) Q(sb)

What is the error of Q(S)?

Recap: traditional subsampling

T
Original Table

(size N)

S
sample
(size n)

s2 sbs1 · · ·s3
subsample
(size s ≪ n)

random sample

What is the error of Q(S)?

Q(s1) Q(s2) Q(s3) Q(sb)

Recap: traditional subsampling

ST
Original Table

(size N)

sample
(size n)

s2 sbs1 · · ·s3
subsample
(size s ≪ n)

random sample

Important properties

1. A tuple may belong to
multiple subsamples.

2. The size of
every subsample is s.

What is the error of Q(S)?

Q(s1) Q(s2) Q(s3) Q(sb)

Traditional subsampling in SQL is slow

CITY PRODUCT PRICE 1 2 · · · b
AA egg $3.00 1 0 1
AA milk $5.00 0 1 0
AA egg $3.00 0 0 1
NYU egg $4.00 0 1 0
NYU milk $6.00 0 0 1
NYU candy $2.00 1 0 0
SF milk $6.00 0 1 0
SF egg $4.00 0 0 0
SF egg $4.00 0 1 1

subsample	 ID

n	
		t
up
le
s

sum = s sum = s

Traditional subsampling in SQL is slow

CITY PRODUCT PRICE 1 2 · · · b
AA egg $3.00 1 0 1
AA milk $5.00 0 1 0
AA egg $3.00 0 0 1
NYU egg $4.00 0 1 0
NYU milk $6.00 0 0 1
NYU candy $2.00 1 0 0
SF milk $6.00 0 1 0
SF egg $4.00 0 0 0
SF egg $4.00 0 1 1

subsample	 ID

n	
		t
up
le
s

Algorithm:
for i = 1, ..., n
for j = 1, ..., b

if sid[i,j] == 1
sum[j] += price[i]

sum = s sum = s

Traditional subsampling in SQL is slow

CITY PRODUCT PRICE 1 2 · · · b
AA egg $3.00 1 0 1
AA milk $5.00 0 1 0
AA egg $3.00 0 0 1
NYU egg $4.00 0 1 0
NYU milk $6.00 0 0 1
NYU candy $2.00 1 0 0
SF milk $6.00 0 1 0
SF egg $4.00 0 0 0
SF egg $4.00 0 1 1

subsample	 ID

n	
		t
up
le
s

Algorithm:
for i = 1, ..., n
for j = 1, ..., b

if sid[i,j] == 1
sum[j] += price[i]

Time Complexity: O(n·b)

sum = s sum = s

Traditional subsampling in SQL is slow

CITY PRODUCT PRICE 1 2 · · · b
AA egg $3.00 1 0 1
AA milk $5.00 0 1 0
AA egg $3.00 0 0 1
NYU egg $4.00 0 1 0
NYU milk $6.00 0 0 1
NYU candy $2.00 1 0 0
SF milk $6.00 0 1 0
SF egg $4.00 0 0 0
SF egg $4.00 0 1 1

subsample	 ID

n	
		t
up
le
s

Algorithm:
for i = 1, ..., n
for j = 1, ..., b

if sid[i,j] == 1
sum[j] += price[i]

Time Complexity: O(n·b)

No error est: 0.35 sec
Trad. subsampling: 118 sec
337x slower

(based	on	1G	sample,	Impala)
sum = s sum = s

Our approach: variational subsampling

T S
sample
(size n)

random
sample

Our approach: variational subsampling

T S
sample
(size n)

random
sample

sbs1 · · ·s3

(size n1) (size n2) (size n3) (size nb)

s2

Our approach: variational subsampling

T S
sample
(size n)

random
sample

Important properties
1. A tuple may belong to multiple

subsamples.
Each sampled tuple can belong to
at most one subsample

2. The size of
every subsample is s.
Allow subsamples to differ in size.sbs1 · · ·s3

(size n1) (size n2) (size n3) (size nb)

s2

Our approach: variational subsampling

T S
sample
(size n)

sbs1 · · ·s3

random
sample

(size n1) (size n2) (size n3) (size nb)

Important properties
1. A tuple may belong to multiple

subsamples.
Each sampled tuple can belong to
at most one subsample

2. The size of
every subsample is s.

s2

Our approach: variational subsampling

T S
sample
(size n)

sbs1 · · ·s3

random
sample

(size n1) (size n2) (size n3) (size nb)

Important properties
1. A tuple may belong to multiple

subsamples.
Each sampled tuple can belong to
at most one subsample

2. The size of
every subsample is s.
Allow subsamples to differ in size.s2

Our approach: variational subsampling

T S
sample
(size n)

s2 sbs1 · · ·s3

random
sample

(size n1) (size n2) (size n3) (size nb)

Important properties
1. A tuple may belong to multiple

subsamples.
Each sampled tuple can belong to
at most one subsample

2. The size of
every subsample is s.
Allow subsamples to differ in size.

Can be implemented in SQL
as a single group-by query!

Variational subsampling in SQL is fast

CITY PRODUCT PRICE subsample ID
AA egg $3.00 1
AA milk $5.00 3
AA egg $3.00 2
NYU egg $4.00 4
NYU milk $6.00 3
NYU candy $2.00 1
SF milk $6.00 5
SF egg $4.00 4
SF egg $4.00 5

n	
		t
up
le
s

randint(1,b)

We call this augmented table, a variational table

Variational subsampling in SQL is fast

CITY PRODUCT PRICE subsample ID
AA egg $3.00 1
AA milk $5.00 3
AA egg $3.00 2
NYU egg $4.00 4
NYU milk $6.00 3
NYU candy $2.00 1
SF milk $6.00 5
SF egg $4.00 4
SF egg $4.00 5

n	
		t
up
le
s

randint(1,b)
Algorithm:
for i = 1, ..., n
sum[sid] += price[i]

We call this augmented table, a variational table

Variational subsampling in SQL is fast

CITY PRODUCT PRICE subsample ID
AA egg $3.00 1
AA milk $5.00 3
AA egg $3.00 2
NYU egg $4.00 4
NYU milk $6.00 3
NYU candy $2.00 1
SF milk $6.00 5
SF egg $4.00 4
SF egg $4.00 5

n	
		t
up
le
s

randint(1,b)
Algorithm:
for i = 1, ..., n
sum[sid] += price[i]

Time Complexity: O(n)

We call this augmented table, a variational table

Variational subsampling in SQL is fast

CITY PRODUCT PRICE subsample ID
AA egg $3.00 1
AA milk $5.00 3
AA egg $3.00 2
NYU egg $4.00 4
NYU milk $6.00 3
NYU candy $2.00 1
SF milk $6.00 5
SF egg $4.00 4
SF egg $4.00 5

n	
		t
up
le
s

randint(1,b)
Algorithm:
for i = 1, ..., n
sum[sid] += price[i]

Time Complexity: O(n)

No error est: 0.35 sec
Trad. subsampling: 118 sec
Var. subsampling: 0.73 sec
162× faster than traditional

We call this augmented table, a variational table
(based	on	1G	sample,	Impala)

Main results

Theorem 1 (Consistency) The distribution of the aggregates of variational
subsamples, after appropriate scaling, converges to the true distribution of the
aggregate of a sample as 𝑛 → ∞.

Main results

Theorem 1 (Consistency) The distribution of the aggregates of variational
subsamples, after appropriate scaling, converges to the true distribution of the
aggregate of a sample as 𝑛 → ∞.

Theorem 2 (Convergence Rate) The convergence rate of variational subsampling
is equal to that of traditional subsampling when b is finite.

𝑂 𝑛%
&'/) +

𝑛%
𝑛 + 𝑏&'/)

The error term from the finite b
(The Dvoretzky–Kiefer–Wolfowitz inequality)

Experiments
1. Does VerdictDB provide enough speedup?

2. Is VerdictDB (UAQP)’s performance comparable

to a tightly-integrated AQP?

3. Is variational subsampling statistically correct?

Experiments
1. Does VerdictDB provide enough speedup?

2. Is VerdictDB (UAQP)’s performance comparable

to a tightly-integrated AQP?

3. Is variational subsampling statistically correct?

Experiments
1. Does VerdictDB provide enough speedup?

2. Is VerdictDB (UAQP)’s performance comparable

to a tightly-integrated AQP engine?

3. Is variational subsampling statistically correct?

Experiments
1. Does VerdictDB provide enough speedup?

2. Is VerdictDB (UAQP)’s performance comparable

to a tightly-integrated AQP engine?

3. Is variational subsampling statistically correct?

Experiments
1. Does VerdictDB provide enough speedup?

2. Is VerdictDB (UAQP)’s performance comparable

to a tightly-integrated AQP engine?

3. Is variational subsampling statistically correct?

Yes

Experiments

Datasets:
• 500GB TPC-H benchmark / 200GB Instacart dataset / synthetic datasets

Underlying databases
• Amazon Redshift, Apache Spark SQL, Apache Impala on 10+1 r4.xlarge cluster

1. Does VerdictDB provide enough speedup?

2. Is VerdictDB (UAQP)’s performance comparable

to a tightly-integrated AQP engine?

3. Is variational subsampling statistically correct?

Yes

Speedup for Redshift

tpc-h benchmark micro-benchmark

Redshift 24.0× Speedup

Speedup for Redshift

tpc-h benchmark micro-benchmark

t3, t10, t15: no speedup (i.e., 1×) due to high-cardinality grouping attributes

Redshift 24.0× Speedup

Speedup for Redshift

t3, t10, t15: no speedup (i.e., 1×) due to high-cardinality grouping attributes

Other queries: 26.3× speedups (relative errors were 2%)

tpc-h benchmark micro-benchmark

Redshift 24.0× Speedup

Speedup for Apache Spark & Impala
Spark SQL 12.0× Speedup

Impala 18.6× Speedup

Speedup for Apache Spark & Impala

speedup =
overhead + processing

overhead + (sample processing)

Lower overhead →
Larger speedup

Spark SQL 12.0× Speedup

Impala 18.6× Speedup

UAQP vs. Tightly-integrated AQP

UAQP vs. Tightly-integrated AQP

VerdictDB was comparable to SnappyData.

UAQP vs. Tightly-integrated AQP

VerdictDB was comparable to SnappyData.

SnappyData ver 0.8 didn’t support the join of two sample tables.

Variational subsampling: correctness
The bars are 5th and 95th percentiles.Rel. err. naturally become smaller for higher selectivity.

Variational subsampling: correctness
The bars are 5th and 95th percentiles.Rel. err. naturally become smaller for higher selectivity.

The estimated errors close to true errors.

Variational subsampling: correctness
The bars are 5th and 95th percentiles.Rel. err. naturally become smaller for higher selectivity.

The accuracy of var. subsampling ≈ (a) bootstrap and (b) trad. subsampling

The estimated errors close to true errors.

Variational subsampling: convergence rate

Variational subsampling: convergence rate

The accuracy was almost the same for relatively large samples.

Variational subsampling: convergence rate

Variational subsampling was significantly faster.

The accuracy was almost the same for relatively large samples.

Conclusion: Universal AQP is viable

Conclusion: Universal AQP is viable

1. Comparable performance to a fully-integrated solution

2. New error estimation technique: variational subsampling

1. Generality and computational efficiency

2. The first subsampling-based error estimation technique for AQP

3. Offers considerable speedup
(18.45× on average, up to 171×, less than 2-3% errors)

Conclusion: Universal AQP is viable

1. Comparable performance to a fully-integrated solution

2. New error estimation technique: variational subsampling

1. Generality and computational efficiency

2. The first subsampling-based error estimation technique for AQP

3. Offers considerable speedup
(18.45× on average, up to 171×, less than 2-3% errors)

Conclusion: Universal AQP is viable

1. Comparable performance to a fully-integrated solution

2. New error estimation technique: variational subsampling

1. Generality and computational efficiency

2. The first subsampling-based error estimation technique for AQP

3. Offers considerable speedup
(18.45× on average, up to 171×, less than 2-3% errors)

Conclusion: Universal AQP is viable

1. Comparable performance to a fully-integrated solution

2. New error estimation technique: variational subsampling

1. Generality and computational efficiency

2. The first subsampling-based error estimation technique for AQP

3. Offers considerable speedup
(18.45× on average, up to 171×, less than 2-3% errors)

Conclusion: Universal AQP is viable

1. Comparable performance to a fully-integrated solution

2. New error estimation technique: variational subsampling

1. Generality and computational efficiency

2. The first subsampling-based error estimation technique for AQP

3. Offers considerable speedup
(18.45× on average, up to 171×, less than 2-3% errors)

Conclusion: Universal AQP is viable

1. Comparable performance to a fully-integrated solution

2. New error estimation technique: variational subsampling

1. Generality and computational efficiency

2. The first subsampling-based error estimation technique for AQP

3. Offers considerable speedup
(18.45× on average, up to 171×, less than 2-3% errors)

Open-sourced (Apache v2.0): http://verdictdb.org

Future Work

Development

Research

Future Work

• Adding more drivers (Presto, Teradata, Oracle, SQL Server, …)

Development

Research

Future Work

• Adding more drivers (Presto, Teradata, Oracle, SQL Server, …)

Development

• Support for online sampling

Research

Future Work

• Adding more drivers (Presto, Teradata, Oracle, SQL Server, …)

Development

• Support for online sampling

• Robust physical designer (see CliffGuard @ SIGMOD 15)

Research

Future Work

• Adding more drivers (Presto, Teradata, Oracle, SQL Server, …)

Development

• Support for online sampling

• Robust physical designer (see CliffGuard @ SIGMOD 15)

• Integration with ML libraries (sampling-based model tuning)

Research

Thank You

http://verdictdb.org

VerdictDB: current status

• We support
• aggregates: sum, count, avg, count-distinct, quantiles, UDAs
• sources: base table, derived table, equi-join
• filters: comparison, some subquery
• others: group-by, having, etc.

• Open-sourced under Apache License version 2.0
• http://verdictdb.org for code and documentation

• Upcoming features
• Online sampling, automated physical designer

VerdictDB: current status

• We support
• aggregates: sum, count, avg, count-distinct, quantiles, UDAs
• sources: base table, derived table, equi-join
• filters: comparison, some subquery
• others: group-by, having, etc.

• Open-sourced under Apache License version 2.0
• http://verdictdb.org for code and documentation

• Upcoming features
• Online sampling, automated physical designer

VerdictDB: current status

• We support
• aggregates: sum, count, avg, count-distinct, quantiles, UDAs
• sources: base table, derived table, equi-join
• filters: comparison, some subquery
• others: group-by, having, etc.

• Open-sourced under Apache License version 2.0
• http://verdictdb.org for code and documentation

• Upcoming features
• Online sampling, automated physical designer

Example of query rewriting

select l_returnflag , count (*) as cc
from lineitem
group by l_returnflag ;

select vt1 .` l_returnflag ` AS `l_returnflag `,
round (sum ((vt1 .`cc ` * vt1 .` sub_size `)) / sum (vt1 .` sub_size `)) AS `cc `,

(stddev (vt1 .` count_order `) * sqrt (avg (vt1 .` sub_size `)))
/ sqrt (sum (vt1 .` sub_size `)) AS `cc_err `

from (select vt0 .` l_returnflag ` AS `l_returnflag `,
((sum ((1.0 / vt0 .` sampling_prob `)) / count (*))
* sum (count (*)) OVER (partition BY vt0 .` l_returnflag `)) AS `cc `,
vt0 .`sid ` AS `sid `, count (*) AS `sub_size `

from lineitem_sample vt0
GROUP BY vt0 .` l_returnflag `, vt0 .`sid `) AS vt1

GROUP BY vt1 .` l_returnflag `;

original

rewritten

Bibliography

[Pol and Jermaine ‘05] Pol, Abhijit, and Christopher Jermaine. "Relational confidence bounds are easy
with the bootstrap." In Proceedings of the 2005 ACM SIGMOD international conference on Management
of data, pp. 587-598. ACM, 2005.

[BlinkDB ‘13] Agarwal, Sameer, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and
Ion Stoica. EuroSys, 2013.

[BlinkDB ‘14] Agarwal, Sameer, Henry Milner, Ariel Kleiner, Ameet Talwalkar, Michael Jordan, Samuel
Madden, Barzan Mozafari, and Ion Stoica. "Knowing when you're wrong: building fast and reliable
approximate query processing systems." SIGMOD, 2014.

[Quickr ‘16] Kandula, Srikanth, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert Grandl,
Surajit Chaudhuri, and Bolin Ding. "Quickr: Lazily approximating complex adhoc queries in bigdata
clusters." SIGMOD, 2016.

Bibliography

[G-OLA ’15] Zeng, Kai, Sameer Agarwal, Ankur Dave, Michael Armbrust, and Ion Stoica. "G-ola:
Generalized on-line aggregation for interactive analysis on big data." SIGMOD, 2015.

[ABM ‘14] Zeng, Kai, Shi Gao, Barzan Mozafari, and Carlo Zaniolo. "The analytical bootstrap: a new method
for fast error estimation in approximate query processing." SIGMOD, 2014.

[Join Synopses ‘99] Acharya, Swarup, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy. "Join
synopses for approximate query answering." SIGMOD Record, 1999.

[Wander Join ‘16] Li, Feifei, Bin Wu, Ke Yi, and Zhuoyue Zhao. "Wander join: Online aggregation via
random walks." SIGMOD, 2016.

[Online ‘97] Hellerstein, Joseph M., Peter J. Haas, and Helen J. Wang. "Online aggregation." SIGMOD,
1997.

[Politis ‘94] Politis, Dimitris N., and Joseph P. Romano. "Large sample confidence regions based on
subsamples under minimal assumptions." The Annals of Statistics, 1994

Variational subsampling: overhead

Variational subsampling: overhead

Overhead of variational subsampling: 0.38–0.87 seconds

Variational subsampling: overhead

Variational subsampling was 100×–237× faster compared to
Consolidated Bootstrap.

Overhead of variational subsampling: 0.38–0.87 seconds

