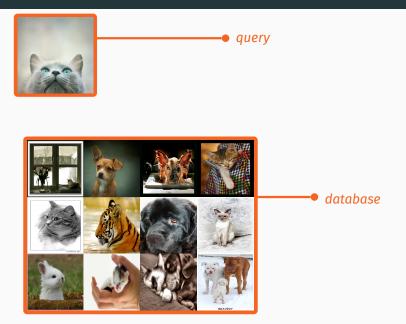
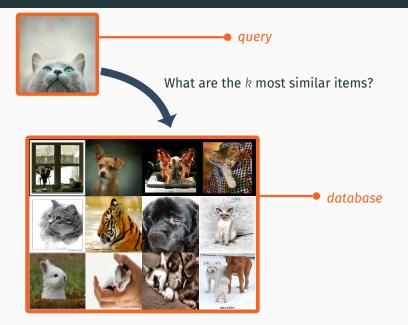
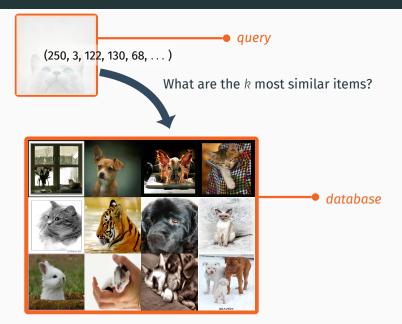
Neighbor-Sensitive Hashing

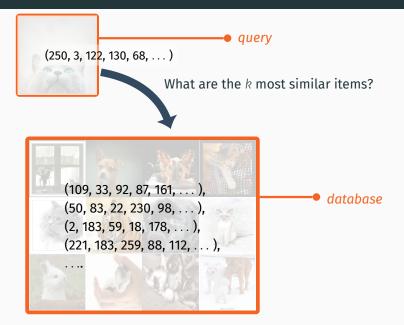
Yongjoo Park Michael Cafarella Barzan Mozafari

University of Michigan, Ann Arbor









kNN is Heart of Key Applications

About 42 results (0.84 seconds)

Image size: 650 x 430

Find other sizes of this image: All sizes - Medium

Best guess for this image: chrome excursion rolltop 37

Excursion Rolltop 37 Pack | Knurled Welded | Chrome Industries www.chromeindustries.com/excursion-rolltop-37-backpack •

Shop the Excursion Rolltop 37 pack. 100% waterproof lightweight construction. Made for adventure travel, all-weather commuting & hauling gear to the track.

Chrome Excursion Rolltop 37 Bike Pack - REI.com

www.rei.com > Cycling > Cycling Backpacks and Bags > Cycling Commuter Backpacks * \$160.00 - In stock

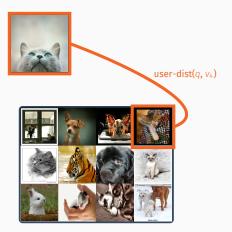
Big enough for overnight camping gear or a full load of groceries, the Chrome Excursion Rolltop 37 Bike Backpack combines super-tough materials with a ...



Classification Systems (*k*NN Classifiers)

NETFLIX Recommender Systems

(Collaborative Filtering)



LSH: Use similarity-preserving hash functions

Let $h(\cdot)$ be a function that produces a hashcode. Then,

Hamming-dist($h(q), h(v_i)$) \propto user-dist(q, v_i)

LSH: Use similarity-preserving hash functions

Hamming-dist($h(q), h(v_i)$) \propto user-dist(q, v_i)

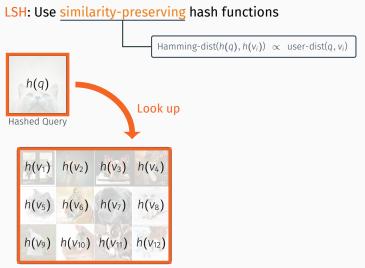
LSH: Use similarity-preserving hash functions

Hamming-dist($h(q), h(v_i)$) \propto user-dist(q, v_i)

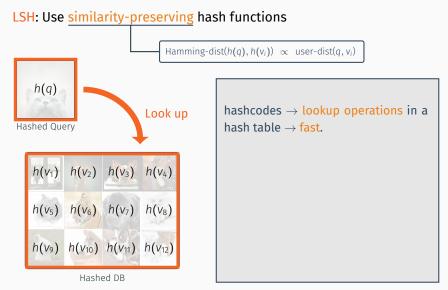
Hashed Query

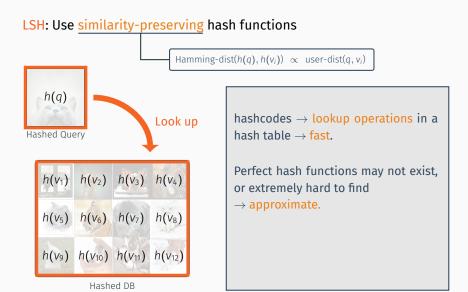
h(v ₁)	h(v ₂)	h(v ₃)	h(v4)
h(v ₅)	h(v ₆)	h(v ₇)	h(v ₈)
h(v ₉)	h(v10)	h(v11)	h(v ₁₂)

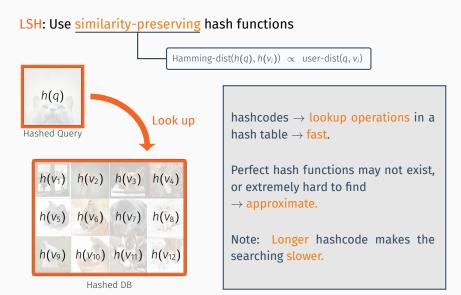
Hashed DB

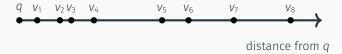


Hashed DB

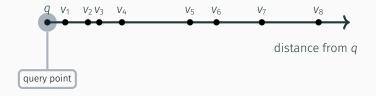


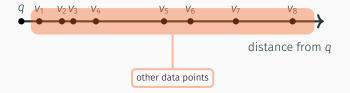




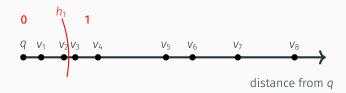


Hashcodes Generation for LSH

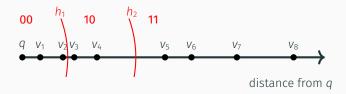


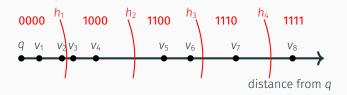


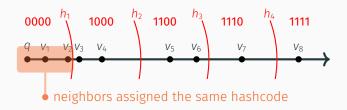
Hashcodes Generation for LSH

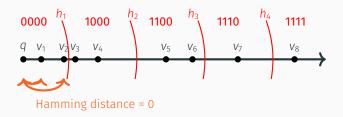


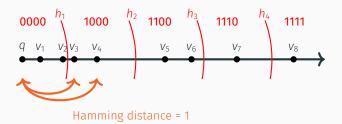
Hashcodes Generation for LSH

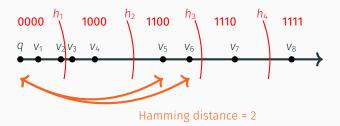


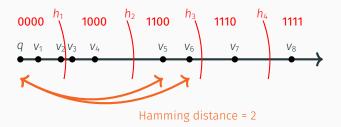




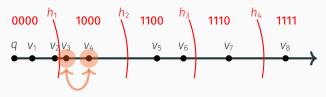






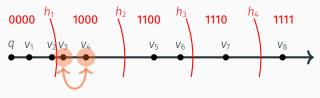


Hashcodes as a proxy



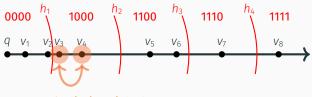
We can't distinguish these two

Suppose LSH generates hashcodes of length 4.



We can't distinguish these two \rightarrow For 3-NN, approximate

Suppose LSH generates hashcodes of length 4.



We can't distinguish these two \rightarrow For 3-NN, approximate

Motivation

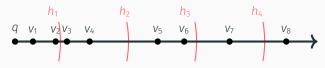
A new scheme able to distinguish v_3 and v_4 based on their hashcodes?

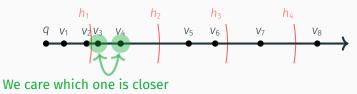
1. Background and Motivation

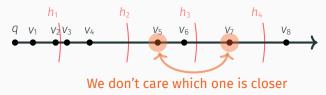
2. NSH Intuition

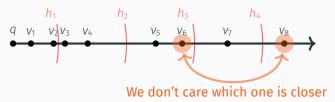
3. NSH Algorithm

4. Experiments

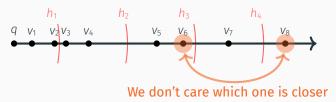






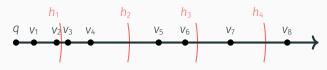


We are interested in 3-NN. Hash functions by LSH.



Observation: h_3 and h_4 are wasted (for 3-NN).

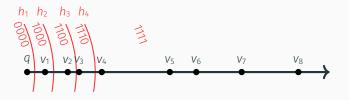
We are interested in 3-NN. Hash functions by LSH.



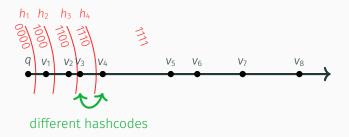
Observation: h_3 and h_4 are wasted (for 3-NN).

Our Idea

Generating hash functions close to the query so that we can better distinguish the close items.

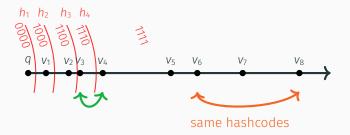


Suppose we could (somehow) generate hash functions in this way.



We could **distinguish** v_3 **and** v_4 based on their hashcodes. (thus, able to solve 3-NN accurately)

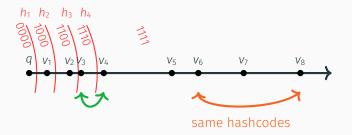
Suppose we could (somehow) generate hash functions in this way.



We could **distinguish** v_3 **and** v_4 based on their hashcodes. (thus, able to solve 3-NN accurately)

Note: Could not distinguish v_6 and v_8 based on their hashcodes.

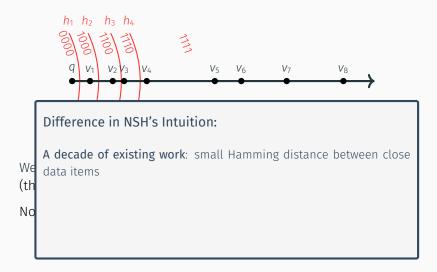
Suppose we could (somehow) generate hash functions in this way.

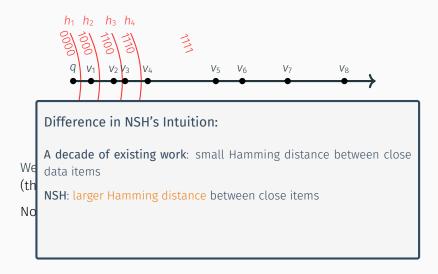


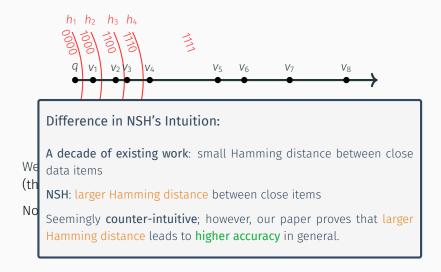
We could **distinguish** v_3 **and** v_4 based on their hashcodes. (thus, able to solve 3-NN accurately)

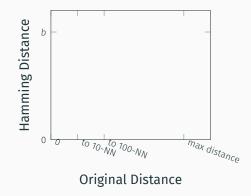
Note: Could not distinguish v_6 and v_8 based on their hashcodes.

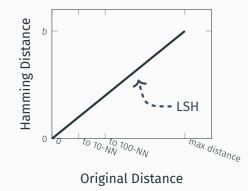
Not an issue for 3-NN

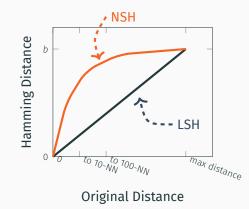


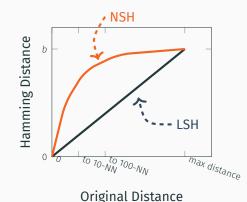




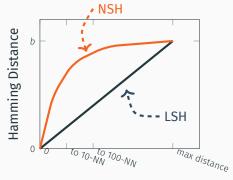








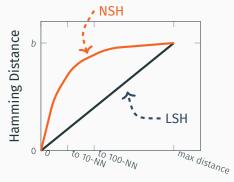
A larger slope indicates higher distinguishing-power based on hashcodes.



Original Distance

A larger slope indicates higher distinguishing-power based on hashcodes.

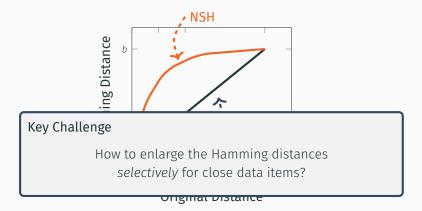
LSH: uniform distinguishing-power over all distance ranges.



Original Distance

A larger slope indicates higher distinguishing-power based on hashcodes.

LSH: uniform distinguishing-power over all distance ranges.NSH: Higher distinguishing-power for the points that are close each other.



A larger slope indicates higher distinguishing-power based on hashcodes.

LSH: uniform distinguishing-power over all distance ranges.

NSH: Higher distinguishing-power for the points that are close each other.

1. Background and Motivation

2. NSH Intuition

3. NSH Algorithm

4. Experiments

Transform data points to expand the space around the query. (before generating hash functions)

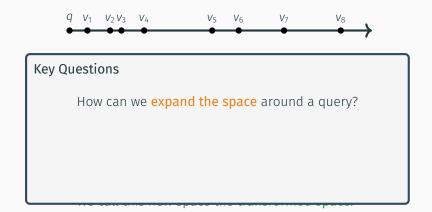
Transform data points to expand the space around the query. (before generating hash functions)

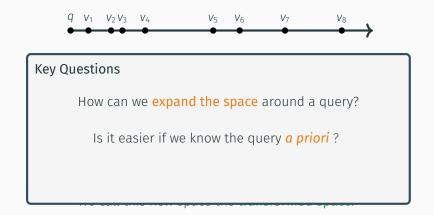
Transform data points **to expand the space** around the query. (*before generating hash functions*)

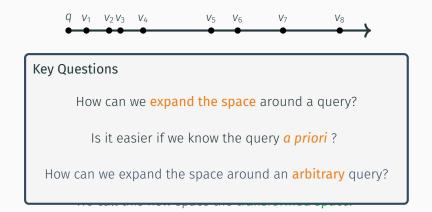
We call this new space the transformed space.

Transform data points to expand the space around the query. (before generating hash functions)

We call this new space the transformed space.







We expand the space around an *arbitrary query* using our proposed Neighbor-Sensitive Transformation (NST). (e.g., $f(v_1), f(v_2), ...$)

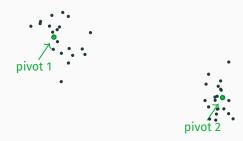
We expand the space around an *arbitrary query* using our proposed Neighbor-Sensitive Transformation (NST). (e.g., $f(v_1), f(v_2), ...$)

Visual illustration of NST



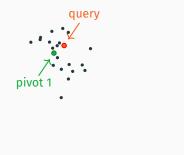
We expand the space around an *arbitrary query* using our proposed Neighbor-Sensitive Transformation (NST). (e.g., $f(v_1), f(v_2), ...$)

Visual illustration of NST



We expand the space around an *arbitrary query* using our proposed Neighbor-Sensitive Transformation (NST). (e.g., $f(v_1), f(v_2), ...$)

Visual illustration of NST



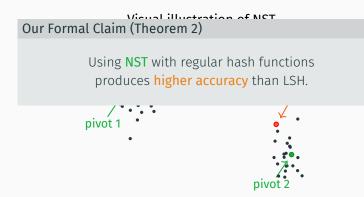
Neighbor-Sensitive Transformation

We expand the space around an *arbitrary query* using our proposed Neighbor-Sensitive Transformation (NST). (e.g., $f(v_1), f(v_2), ...$)

Visual illustration of NST

Neighbor-Sensitive Transformation

We expand the space around an *arbitrary query* using our proposed Neighbor-Sensitive Transformation (NST). (e.g., $f(v_1), f(v_2), ...$)



Offline Processing

Original Database

Offline Processing

Original Database

Offline Processing

Original Database

Offline Processing

Original Database

Offline Processing

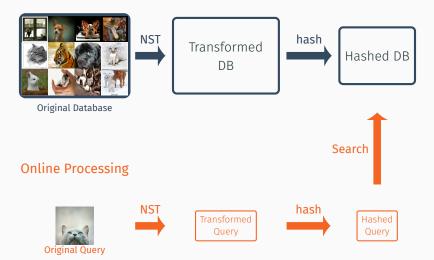
Original Database

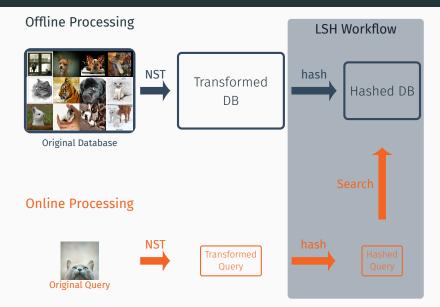
Offline Processing

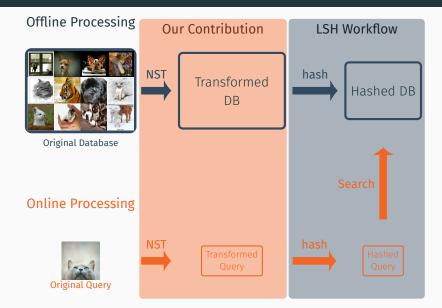
Original Database

Offline Processing

Original Database







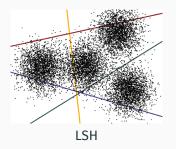
Neighbor-Sensitive Hashing Visualized

We visualized the hash functions in the original space.

Dataset: five 2D normal distributions, Generated 4 hash functions Hash functions for NSH were generated in the transformed space.

Neighbor-Sensitive Hashing Visualized

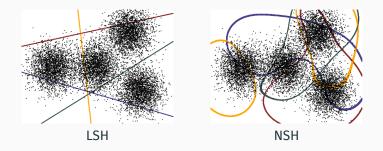
We visualized the hash functions in the original space.



Dataset: five 2D normal distributions, Generated 4 hash functions Hash functions for NSH were generated in the transformed space.

Neighbor-Sensitive Hashing Visualized

We visualized the hash functions in the original space.



Dataset: five 2D normal distributions, Generated 4 hash functions Hash functions for NSH were generated in the transformed space.

1. Background and Motivation

2. NSH Intuition

3. NSH Algorithm

4. Experiments

Quality Metric

$$recall(k)$$
@ $r = \frac{(\# \text{ of true } k\text{NN in the retrieved})}{k} \times 100.$

Quality Metric

$$recall(k)$$
@ $r = \frac{(\# of true kNN in the retrieved)}{k} \times 100.$

Note: Higher recall means either

(i) more accurate searching for the same time budget, or

(ii) faster searching for the same target recall.

Quality Metric

$$recall(k)$$
@ $r = \frac{(\# \text{ of true } k\text{NN in the retrieved})}{k} \times 100.$

Note: Higher recall means either

- (i) more accurate searching for the same time budget, or
- (ii) faster searching for the same target recall.

Compared Methods: three well-known and five state-of-the-arts

Quality Metric

$$recall(k)$$
@ $r = \frac{(\# \text{ of true } k\text{NN in the retrieved})}{k} \times 100.$

Note: Higher recall means either

- (i) more accurate searching for the same time budget, or
- (ii) faster searching for the same target recall.

Compared Methods: three well-known and five state-of-the-arts

- 1. Locality Sensitive Hashing (LSH) [Datar et al., 2004]
- 2. Spectral Hashing (SH) [Weiss et al., 2009]
- 3. Spherical Hashing (SpH) [Heo et al., 2012]
- 4. Data Sensitive Hashing (CPH) [Gao et al., 2014]
- 5. Anchor Graph Hashing (AGH) [Liu et al., 2011]
- 6. Compressed Hashing (CH) [Lin et al., 2013]
- 7. Complementary Projection Hashing (CPH) [Jin et al., 2013]
- 8. Kernelized Supervised Hashing (KSH) [Kulis and Grauman, 2012]

Quality Metric

$$recall(k)$$
@ $r = \frac{(\# \text{ of true } k\text{NN in the retrieved})}{k} \times 100.$

Note: Higher recall means either

- (i) more accurate searching for the same time budget, or
- (ii) faster searching for the same target recall.

Compared Methods: three well-known and five state-of-the-arts

1. Locality Sensitive Hashing (LSH) [Datar et al., 2004]

Involves data transformations for different purposes

- 3 Spherical Hashing (SpH) [Heo et al., 2012]
- 4 Data Sensitive Hashing (CPH) [Gao et al., 2014]
- 5. Anchor Graph Hashing (AGH) [Liu et al., 2011]
- 6. Compressed Hashing (CH) [Lin et al., 2013]
- 7. Complementary Projection Hashing (CPH) [Jin et al., 2013]
- 8. Kernelized Supervised Hashing (KSH) [Kulis and Grauman, 2012]

Our Experimental Claim:

1. NSH achieved "larger Hamming distances between close data items"

- 1. NSH achieved "larger Hamming distances between close data items"
- 2. NSH showed higher recalls (for fixed hashcode sizes) than compared methods.

- 1. NSH achieved "larger Hamming distances between close data items"
- 2. NSH showed **higher recalls** (for fixed hashcode sizes) than compared methods.
- 3. NSH showed **faster search speed** (for target recalls) than compared methods.

- 1. NSH achieved "larger Hamming distances between close data items"
- 2. NSH showed higher recalls (for fixed hashcode sizes) than compared methods.
- 3. NSH showed **faster search speed** (for target recalls) than compared methods.
- 4. NSH's hash function generation was reasonably **fast**.

Our Experimental Claim:

- 1. NSH achieved "larger Hamming distances between close data items"
- 2. NSH showed higher recalls (for fixed hashcode sizes) than compared methods.
- 3. NSH showed **faster search speed** (for target recalls) than compared methods.
- 4. NSH's hash function generation was reasonably **fast**.

Real-World Datasets:

Our Experimental Claim:

- 1. NSH achieved "larger Hamming distances between close data items"
- 2. NSH showed higher recalls (for fixed hashcode sizes) than compared methods.
- 3. NSH showed **faster search speed** (for target recalls) than compared methods.
- 4. NSH's hash function generation was reasonably **fast**.

Real-World Datasets:

1. MNIST: 69K hand-written digit images

Our Experimental Claim:

- 1. NSH achieved "larger Hamming distances between close data items"
- 2. NSH showed higher recalls (for fixed hashcode sizes) than compared methods.
- 3. NSH showed **faster search speed** (for target recalls) than compared methods.
- 4. NSH's hash function generation was reasonably **fast**.

Real-World Datasets:

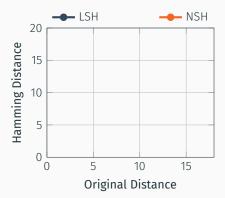
- 1. MNIST: 69K hand-written digit images
- 2. TINY: 80 million image (GIST) descriptors

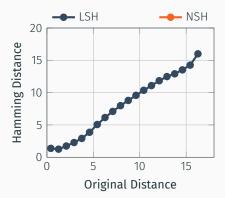
Our Experimental Claim:

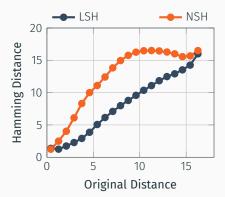
- 1. NSH achieved "larger Hamming distances between close data items"
- 2. NSH showed **higher recalls** (for fixed hashcode sizes) than compared methods.
- 3. NSH showed **faster search speed** (for target recalls) than compared methods.
- 4. NSH's hash function generation was reasonably **fast**.

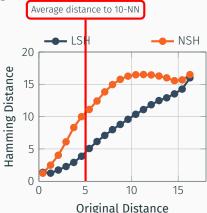
Real-World Datasets:

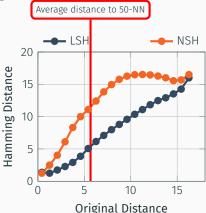
- 1. MNIST: 69K hand-written digit images
- 2. TINY: 80 million image (GIST) descriptors
- 3. SIFT: 50 million image (SIFT) descriptors





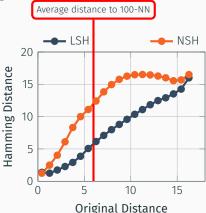






We measured the relationship between

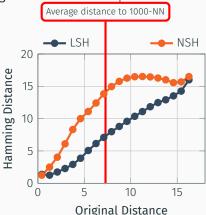
(i) the original distances between pairs of original data items,(ii) the Hamming distance between pairs of hashcodes.



Neighbor-Sensitive Hashing Property

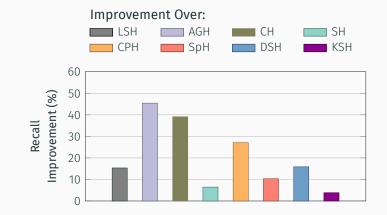
We measured the relationship between

(i) the original distances between pairs of original data items,(ii) the Hamming distance between pairs of hashcodes.



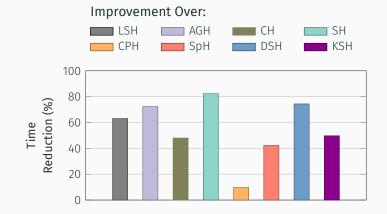
Recall Improvement for Fixed Hashcode Size

Compared search accuracy of 9 different methods (including NSH).



Dataset: TINY, Hashcode size: 64 bits

Measured search time of 9 different methods (including NSH).



Dataset: SIFT, Hashcode size: 64 bits, Target recall: 50%

Offline Computation Time

Method	Hash Function Generation (sec)		Hashcode Generation (min)	
	32bit	64bit	32bit	64bit
LSH	0.38	0.29	22	23
SH	28	36	54	154
AGH	786	873	105	95
SpH	397	875	18	23
СН	483	599	265	266
СРН	34,371	63,398	85	105
DSH	3.14	1.48	24	23
KSH	2,028	3,502	24	29
NSH (Ours)	231	284	37	46

Offline Computation Time

Method	Hash Function Generation (sec)		Hashcode Generation (min)	
	32bit	64bit	32bit	64bit
LSH	0.38	0.29	22	23
SH	28	36	54	154
AGH	786	873	105	95
SpH	397	875	18	23
СН	483	599	265	266
СРН	34,371	63,398	85	105
DSH	3.14	1.48	24	23
KSH	2,028	3,502	24	29
NSH (Ours)	231	284	37	46

Some learning-based methods (e.g., CPH, KSH) were extremely slow.

Offline Computation Time

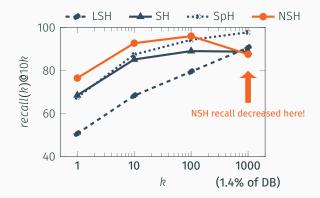
Method	Hash Function Generation (sec)		Hashcode Generation (min)	
	32bit	64bit	32bit	64bit
LSH	0.38	0.29	22	23
SH	28	36	54	154
AGH	786	873	105	95
SpH	397	875	18	23
СН	483	599	265	266
СРН	34,371	63,398	85	105
DSH	3.14	1.48	24	23
KSH	2,028	3,502	24	29
NSH (Ours)	231	284	37	46

Some learning-based methods (e.g., CPH, KSH) were extremely slow.

Our method was among the fastest.

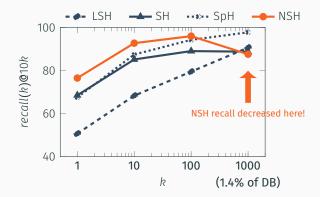
Neighbor-Sensitive Effect

NSH was more effective for relatively small k.



Neighbor-Sensitive Effect

NSH was more effective for relatively small k.



With a **bigger** dataset, this "recall-dropping effect" was not observed.

1. We have formally shown that **counter-intuitive idea** can lead to improved *k*NN accuracy.

1. We have formally shown that **counter-intuitive idea** can lead to improved *k*NN accuracy.

2. Based on the idea, we have proposed a novel hashing-based search method—**Neighbor-Sensitive Hashing**.

1. We have formally shown that **counter-intuitive idea** can lead to improved *k*NN accuracy.

2. Based on the idea, we have proposed a novel hashing-based search method—**Neighbor-Sensitive Hashing**.

3. We have empirically demonstrated that our proposed method could achieve better *k*NN performance (faster or more accurate) compared to existing methods.

Thank You!

References I

- Charikar, M. S. (2002).
- Similarity estimation techniques from rounding algorithms. In *SOTC.*
- Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. (2004). Locality-sensitive hashing scheme based on p-stable distributions.
 - In SoCG.
- - Gao, J., Jagadish, H. V., Lu, W., and Ooi, B. C. (2014). Dsh: data sensitive hashing for high-dimensional k-nnsearch. In *SIGMOD*.
- - Heo, J.-P., Lee, Y., He, J., Chang, S.-F., and Yoon, S.-E. (2012). Spherical hashing. In *CVPR*.

References II

Jin, Z., Hu, Y., Lin, Y., Zhang, D., Lin, S., Cai, D., and Li, X. (2013). Complementary projection hashing. In *ICCV*.

- Kulis, B. and Grauman, K. (2012).
 Kernelized locality-sensitive hashing. TPAM.
- Lin, Y., Jin, R., Cai, D., Yan, S., and Li, X. (2013). Compressed hashing.

In CVPR.

Liu, W., Wang, J., Kumar, S., and Chang, S.-F. (2011). Hashing with graphs. In *ICML*.

Weiss, Y., Torralba, A., and Fergus, R. (2009). Spectral hashing. In NIPS.

We expand the space around a query using Neighbor-Sensitive Transformation.

We expand the space around a query using Neighbor-Sensitive Transformation.

A Neighbor-Sensitive Transformation (NST) is simply a function of data points (e.g., $f(v_1), f(v_2), ...$)

We expand the space around a query using Neighbor-Sensitive Transformation.

A Neighbor-Sensitive Transformation (NST) is simply a function of data points (e.g., $f(v_1), f(v_2), ...$)

The function $f(\cdot)$ qualifies for **NST** if $f(\cdot)$ satisfies some technical requirements. (please see our paper)

We expand the space around a query using Neighbor-Sensitive Transformation.

A Neighbor-Sensitive Transformation (NST) is simply a function of data points (e.g., $f(v_1), f(v_2), ...$)

The function $f(\cdot)$ qualifies for **NST** if $f(\cdot)$ satisfies some technical requirements. (please see our paper)

Our Formal Claim (Theorem 2)

Using NST with regular hash functions produces higher accuracy than LSH.

Let us assume a query q is known

Let us assume a query q is known

Then, the following function works as NST for *q*:

$$f_p(\mathbf{v}) = \exp\left(-\frac{\|p-\mathbf{v}\|^2}{\eta^2}\right)$$

where **pivot** *p* is a data point close to *q*.

Let us assume a query q is known

Then, the following function works as NST for q:

$$f_{p}(\mathbf{v}) = \exp\left(-\frac{\|p-\mathbf{v}\|^{2}}{\eta^{2}}\right)$$

where **pivot** *p* is a data point close to *q*.

We formally prove that this function is NST

Let us assume a query q is known

Then, the following function works as NST for q:

$$f_{\rho}(\mathbf{v}) = \exp\left(-\frac{\|p-\mathbf{v}\|^2}{\eta^2}\right)$$

where **pivot** *p* is a data point close to *q*.

We formally prove that this function is NST

Of course, q is unknown a priori

Let us assume a query q is known

Then, the following function works as NST for q:

$$f_{\rho}(\mathbf{v}) = \exp\left(-\frac{\|p-\mathbf{v}\|^2}{\eta^2}\right)$$

where **pivot** *p* is a data point close to *q*.

We formally prove that this function is NST

Of course, q is unknown a priori

Then, the following function is NST for arbitrary q:

$$f(\mathbf{v}) = (f_{p_1}(\mathbf{v}), \ldots, f_{p_m}(\mathbf{v}))$$

with multiple pivots p_1, \ldots, p_m .

Let us assume a query q is known

Then, the following function works as NST for q:

$$f_{\rho}(\mathbf{v}) = \exp\left(-\frac{\|p-\mathbf{v}\|^2}{\eta^2}\right)$$

where **pivot** *p* is a data point close to *q*.

We formally prove that this function is NST

Of course, q is unknown a priori

Then, the following function is NST for arbitrary q:

$$f(\mathbf{v}) = (f_{p_1}(\mathbf{v}), \ldots, f_{p_m}(\mathbf{v}))$$

with multiple pivots p_1, \ldots, p_m .

We don't formally prove, but show empirically that this is NST for arbitrary queries.