
Neighbor-Sensitive Hashing

Yongjoo Park
Michael Cafarella
Barzan Mozafari

University of Michigan, Ann Arbor



k-Nearest Neighbors Problem (kNN)

query

database

What are the k most similar items?

(250, 3, 122, 130, 68, . . . )

(109, 33, 92, 87, 161, . . . ),
(50, 83, 22, 230, 98, . . . ),
(2, 183, 59, 18, 178, . . . ),
(221, 183, 259, 88, 112, . . . ),
. . ..

1



k-Nearest Neighbors Problem (kNN)

query

database

What are the k most similar items?

(250, 3, 122, 130, 68, . . . )

(109, 33, 92, 87, 161, . . . ),
(50, 83, 22, 230, 98, . . . ),
(2, 183, 59, 18, 178, . . . ),
(221, 183, 259, 88, 112, . . . ),
. . ..

1



k-Nearest Neighbors Problem (kNN)

query

database

What are the k most similar items?

(250, 3, 122, 130, 68, . . . )

(109, 33, 92, 87, 161, . . . ),
(50, 83, 22, 230, 98, . . . ),
(2, 183, 59, 18, 178, . . . ),
(221, 183, 259, 88, 112, . . . ),
. . ..

1



k-Nearest Neighbors Problem (kNN)

query

database

What are the k most similar items?

(250, 3, 122, 130, 68, . . . )

(109, 33, 92, 87, 161, . . . ),
(50, 83, 22, 230, 98, . . . ),
(2, 183, 59, 18, 178, . . . ),
(221, 183, 259, 88, 112, . . . ),
. . ..

1



k-Nearest Neighbors Problem (kNN)

query

database

What are the k most similar items?

(250, 3, 122, 130, 68, . . . )

(109, 33, 92, 87, 161, . . . ),
(50, 83, 22, 230, 98, . . . ),
(2, 183, 59, 18, 178, . . . ),
(221, 183, 259, 88, 112, . . . ),
. . ..

1



kNN is Heart of Key Applications

Search Engine

Classification Systems
(kNN Classifiers)

Recommender Systems
(Collaborative Filtering)

2



Naïve Approach to kNN

Naïve Approach: linear search with the original representations

user-dist(q, v1)user-dist(q, v2)user-dist(q, v3)user-dist(q, v4)user-dist(q, v5)

Pick the items with the k smallest
user-defined distances

Extremely slow

Note: No known fast exact algorithms
for dense, high-dimensional vectors

3



Naïve Approach to kNN

Naïve Approach: linear search with the original representations

user-dist(q, v1)

user-dist(q, v2)user-dist(q, v3)user-dist(q, v4)user-dist(q, v5)

Pick the items with the k smallest
user-defined distances

Extremely slow

Note: No known fast exact algorithms
for dense, high-dimensional vectors

3



Naïve Approach to kNN

Naïve Approach: linear search with the original representations

user-dist(q, v1)

user-dist(q, v2)

user-dist(q, v3)user-dist(q, v4)user-dist(q, v5)

Pick the items with the k smallest
user-defined distances

Extremely slow

Note: No known fast exact algorithms
for dense, high-dimensional vectors

3



Naïve Approach to kNN

Naïve Approach: linear search with the original representations

user-dist(q, v1)user-dist(q, v2)

user-dist(q, v3)

user-dist(q, v4)user-dist(q, v5)

Pick the items with the k smallest
user-defined distances

Extremely slow

Note: No known fast exact algorithms
for dense, high-dimensional vectors

3



Naïve Approach to kNN

Naïve Approach: linear search with the original representations

user-dist(q, v1)user-dist(q, v2)user-dist(q, v3)

user-dist(q, v4)

user-dist(q, v5)

Pick the items with the k smallest
user-defined distances

Extremely slow

Note: No known fast exact algorithms
for dense, high-dimensional vectors

3



Naïve Approach to kNN

Naïve Approach: linear search with the original representations

user-dist(q, v1)user-dist(q, v2)user-dist(q, v3)user-dist(q, v4)

user-dist(q, v5)

Pick the items with the k smallest
user-defined distances

Extremely slow

Note: No known fast exact algorithms
for dense, high-dimensional vectors

3



Naïve Approach to kNN

Naïve Approach: linear search with the original representations

user-dist(q, v1)user-dist(q, v2)user-dist(q, v3)user-dist(q, v4)

user-dist(q, v5)

Pick the items with the k smallest
user-defined distances

Extremely slow

Note: No known fast exact algorithms
for dense, high-dimensional vectors

3



Naïve Approach to kNN

Naïve Approach: linear search with the original representations

user-dist(q, v1)user-dist(q, v2)user-dist(q, v3)user-dist(q, v4)

user-dist(q, v5)

Pick the items with the k smallest
user-defined distances

Extremely slow

Note: No known fast exact algorithms
for dense, high-dimensional vectors

3



Naïve Approach to kNN

Naïve Approach: linear search with the original representations

user-dist(q, v1)user-dist(q, v2)user-dist(q, v3)user-dist(q, v4)

user-dist(q, v5)

Pick the items with the k smallest
user-defined distances

Extremely slow

Note: No known fast exact algorithms
for dense, high-dimensional vectors

3



Locality-Sensitive Hashing for kNN

LSH: Use similarity-preserving hash functions

Hamming-dist(h(q), h(vi)) ∝ user-dist(q, vi)

First proposed by [Datar et al., 2004] and [Charikar, 2002]

h(q)

Hashed Query

h(v1) h(v2) h(v3) h(v4)

h(v5) h(v6) h(v7) h(v8)

h(v9) h(v10) h(v11) h(v12)

Hashed DB

Let h(·) be a function that produces a hashcode. Then,

Hamming-dist(h(q),h(vi)) ∝ user-dist(q, vi)

Look up hashcodes → lookup operations in a
hash table → fast.

Perfect hash functions may not exist,
or extremely hard to find
→ approximate.

Note: Longer hashcode makes the
searching slower.

4



Locality-Sensitive Hashing for kNN

LSH: Use similarity-preserving hash functions

Hamming-dist(h(q), h(vi)) ∝ user-dist(q, vi)

First proposed by [Datar et al., 2004] and [Charikar, 2002]

h(q)

Hashed Query

h(v1) h(v2) h(v3) h(v4)

h(v5) h(v6) h(v7) h(v8)

h(v9) h(v10) h(v11) h(v12)

Hashed DB

Let h(·) be a function that produces a hashcode. Then,

Hamming-dist(h(q),h(vi)) ∝ user-dist(q, vi)

Look up hashcodes → lookup operations in a
hash table → fast.

Perfect hash functions may not exist,
or extremely hard to find
→ approximate.

Note: Longer hashcode makes the
searching slower.

4



Locality-Sensitive Hashing for kNN

LSH: Use similarity-preserving hash functions

Hamming-dist(h(q), h(vi)) ∝ user-dist(q, vi)

First proposed by [Datar et al., 2004] and [Charikar, 2002]

h(q)

Hashed Query

h(v1) h(v2) h(v3) h(v4)

h(v5) h(v6) h(v7) h(v8)

h(v9) h(v10) h(v11) h(v12)

Hashed DB

Let h(·) be a function that produces a hashcode. Then,

Hamming-dist(h(q),h(vi)) ∝ user-dist(q, vi)

Look up hashcodes → lookup operations in a
hash table → fast.

Perfect hash functions may not exist,
or extremely hard to find
→ approximate.

Note: Longer hashcode makes the
searching slower.

4



Locality-Sensitive Hashing for kNN

LSH: Use similarity-preserving hash functions

Hamming-dist(h(q), h(vi)) ∝ user-dist(q, vi)

First proposed by [Datar et al., 2004] and [Charikar, 2002]

h(q)

Hashed Query

h(v1) h(v2) h(v3) h(v4)

h(v5) h(v6) h(v7) h(v8)

h(v9) h(v10) h(v11) h(v12)

Hashed DB

Let h(·) be a function that produces a hashcode. Then,

Hamming-dist(h(q),h(vi)) ∝ user-dist(q, vi)

Look up hashcodes → lookup operations in a
hash table → fast.

Perfect hash functions may not exist,
or extremely hard to find
→ approximate.

Note: Longer hashcode makes the
searching slower.

4



Locality-Sensitive Hashing for kNN

LSH: Use similarity-preserving hash functions

Hamming-dist(h(q), h(vi)) ∝ user-dist(q, vi)

First proposed by [Datar et al., 2004] and [Charikar, 2002]

h(q)

Hashed Query

h(v1) h(v2) h(v3) h(v4)

h(v5) h(v6) h(v7) h(v8)

h(v9) h(v10) h(v11) h(v12)

Hashed DB

Let h(·) be a function that produces a hashcode. Then,

Hamming-dist(h(q),h(vi)) ∝ user-dist(q, vi)

Look up

hashcodes → lookup operations in a
hash table → fast.

Perfect hash functions may not exist,
or extremely hard to find
→ approximate.

Note: Longer hashcode makes the
searching slower.

4



Locality-Sensitive Hashing for kNN

LSH: Use similarity-preserving hash functions

Hamming-dist(h(q), h(vi)) ∝ user-dist(q, vi)

First proposed by [Datar et al., 2004] and [Charikar, 2002]

h(q)

Hashed Query

h(v1) h(v2) h(v3) h(v4)

h(v5) h(v6) h(v7) h(v8)

h(v9) h(v10) h(v11) h(v12)

Hashed DB

Let h(·) be a function that produces a hashcode. Then,

Hamming-dist(h(q),h(vi)) ∝ user-dist(q, vi)

Look up hashcodes → lookup operations in a
hash table → fast.

Perfect hash functions may not exist,
or extremely hard to find
→ approximate.

Note: Longer hashcode makes the
searching slower.

4



Locality-Sensitive Hashing for kNN

LSH: Use similarity-preserving hash functions

Hamming-dist(h(q), h(vi)) ∝ user-dist(q, vi)

First proposed by [Datar et al., 2004] and [Charikar, 2002]

h(q)

Hashed Query

h(v1) h(v2) h(v3) h(v4)

h(v5) h(v6) h(v7) h(v8)

h(v9) h(v10) h(v11) h(v12)

Hashed DB

Let h(·) be a function that produces a hashcode. Then,

Hamming-dist(h(q),h(vi)) ∝ user-dist(q, vi)

Look up hashcodes → lookup operations in a
hash table → fast.

Perfect hash functions may not exist,
or extremely hard to find
→ approximate.

Note: Longer hashcode makes the
searching slower.

4



Locality-Sensitive Hashing for kNN

LSH: Use similarity-preserving hash functions

Hamming-dist(h(q), h(vi)) ∝ user-dist(q, vi)

First proposed by [Datar et al., 2004] and [Charikar, 2002]

h(q)

Hashed Query

h(v1) h(v2) h(v3) h(v4)

h(v5) h(v6) h(v7) h(v8)

h(v9) h(v10) h(v11) h(v12)

Hashed DB

Let h(·) be a function that produces a hashcode. Then,

Hamming-dist(h(q),h(vi)) ∝ user-dist(q, vi)

Look up hashcodes → lookup operations in a
hash table → fast.

Perfect hash functions may not exist,
or extremely hard to find
→ approximate.

Note: Longer hashcode makes the
searching slower.

4



Hashcodes Generation for LSH

Suppose LSH generates hashcodes of length 4.

q v1 v2 v3 v4 v5 v6 v7 v8

h10 1 h200 10 11 h3 h40000 1000 1100 1110 1111

distance from q

query point other data points
Hamming distance = 0

Hamming distance = 1Hamming distance = 2
neighbors assigned the same hashcode

We can’t distinguish these two
→ For 3-NN, approximate

Hashcodes as a proxy
Motivation

A new scheme able to distinguish v3 and v4
based on their hashcodes?

5



Hashcodes Generation for LSH

Suppose LSH generates hashcodes of length 4.

q v1 v2 v3 v4 v5 v6 v7 v8

h10 1 h200 10 11 h3 h40000 1000 1100 1110 1111

distance from q

query point

other data points
Hamming distance = 0

Hamming distance = 1Hamming distance = 2
neighbors assigned the same hashcode

We can’t distinguish these two
→ For 3-NN, approximate

Hashcodes as a proxy
Motivation

A new scheme able to distinguish v3 and v4
based on their hashcodes?

5



Hashcodes Generation for LSH

Suppose LSH generates hashcodes of length 4.

q v1 v2 v3 v4 v5 v6 v7 v8

h10 1 h200 10 11 h3 h40000 1000 1100 1110 1111

distance from q

query point

other data points

Hamming distance = 0
Hamming distance = 1Hamming distance = 2

neighbors assigned the same hashcode
We can’t distinguish these two
→ For 3-NN, approximate

Hashcodes as a proxy
Motivation

A new scheme able to distinguish v3 and v4
based on their hashcodes?

5



Hashcodes Generation for LSH

Suppose LSH generates hashcodes of length 4.

q v1 v2 v3 v4 v5 v6 v7 v8

h10 1

h200 10 11 h3 h40000 1000 1100 1110 1111

distance from q

query point other data points
Hamming distance = 0

Hamming distance = 1Hamming distance = 2
neighbors assigned the same hashcode

We can’t distinguish these two
→ For 3-NN, approximate

Hashcodes as a proxy
Motivation

A new scheme able to distinguish v3 and v4
based on their hashcodes?

5



Hashcodes Generation for LSH

Suppose LSH generates hashcodes of length 4.

q v1 v2 v3 v4 v5 v6 v7 v8

h1

0 1

h200 10 11

h3 h40000 1000 1100 1110 1111

distance from q

query point other data points
Hamming distance = 0

Hamming distance = 1Hamming distance = 2
neighbors assigned the same hashcode

We can’t distinguish these two
→ For 3-NN, approximate

Hashcodes as a proxy
Motivation

A new scheme able to distinguish v3 and v4
based on their hashcodes?

5



Hashcodes Generation for LSH

Suppose LSH generates hashcodes of length 4.

q v1 v2 v3 v4 v5 v6 v7 v8

h1

0 1

h2

00 10 11

h3 h40000 1000 1100 1110 1111

distance from q

query point other data points
Hamming distance = 0

Hamming distance = 1Hamming distance = 2
neighbors assigned the same hashcode

We can’t distinguish these two
→ For 3-NN, approximate

Hashcodes as a proxy
Motivation

A new scheme able to distinguish v3 and v4
based on their hashcodes?

5



Hashcodes Generation for LSH

Suppose LSH generates hashcodes of length 4.

q v1 v2 v3 v4 v5 v6 v7 v8

h1

0 1

h2

00 10 11

h3 h40000 1000 1100 1110 1111

distance from q

query point other data points
Hamming distance = 0

Hamming distance = 1Hamming distance = 2

neighbors assigned the same hashcode

We can’t distinguish these two
→ For 3-NN, approximate

Hashcodes as a proxy
Motivation

A new scheme able to distinguish v3 and v4
based on their hashcodes?

5



Hashcodes Generation for LSH

Suppose LSH generates hashcodes of length 4.

q v1 v2 v3 v4 v5 v6 v7 v8

h1

0 1

h2

00 10 11

h3 h40000 1000 1100 1110 1111

distance from q

query point other data points

Hamming distance = 0

Hamming distance = 1Hamming distance = 2
neighbors assigned the same hashcode

We can’t distinguish these two
→ For 3-NN, approximate

Hashcodes as a proxy
Motivation

A new scheme able to distinguish v3 and v4
based on their hashcodes?

5



Hashcodes Generation for LSH

Suppose LSH generates hashcodes of length 4.

q v1 v2 v3 v4 v5 v6 v7 v8

h1

0 1

h2

00 10 11

h3 h40000 1000 1100 1110 1111

distance from q

query point other data points
Hamming distance = 0

Hamming distance = 1

Hamming distance = 2
neighbors assigned the same hashcode

We can’t distinguish these two
→ For 3-NN, approximate

Hashcodes as a proxy
Motivation

A new scheme able to distinguish v3 and v4
based on their hashcodes?

5



Hashcodes Generation for LSH

Suppose LSH generates hashcodes of length 4.

q v1 v2 v3 v4 v5 v6 v7 v8

h1

0 1

h2

00 10 11

h3 h40000 1000 1100 1110 1111

distance from q

query point other data points
Hamming distance = 0

Hamming distance = 1

Hamming distance = 2

neighbors assigned the same hashcode
We can’t distinguish these two
→ For 3-NN, approximate

Hashcodes as a proxy
Motivation

A new scheme able to distinguish v3 and v4
based on their hashcodes?

5



Hashcodes Generation for LSH

Suppose LSH generates hashcodes of length 4.

q v1 v2 v3 v4 v5 v6 v7 v8

h1

0 1

h2

00 10 11

h3 h40000 1000 1100 1110 1111

distance from q

query point other data points
Hamming distance = 0

Hamming distance = 1

Hamming distance = 2

neighbors assigned the same hashcode
We can’t distinguish these two
→ For 3-NN, approximate

Hashcodes as a proxy

Motivation

A new scheme able to distinguish v3 and v4
based on their hashcodes?

5



Hashcodes Generation for LSH

Suppose LSH generates hashcodes of length 4.

q v1 v2 v3 v4 v5 v6 v7 v8

h1

0 1

h2

00 10 11

h3 h40000 1000 1100 1110 1111

distance from q

query point other data points
Hamming distance = 0

Hamming distance = 1Hamming distance = 2
neighbors assigned the same hashcode

We can’t distinguish these two

→ For 3-NN, approximate

Hashcodes as a proxy
Motivation

A new scheme able to distinguish v3 and v4
based on their hashcodes?

5



Hashcodes Generation for LSH

Suppose LSH generates hashcodes of length 4.

q v1 v2 v3 v4 v5 v6 v7 v8

h1

0 1

h2

00 10 11

h3 h40000 1000 1100 1110 1111

distance from q

query point other data points
Hamming distance = 0

Hamming distance = 1Hamming distance = 2
neighbors assigned the same hashcode

We can’t distinguish these two
→ For 3-NN, approximate

Hashcodes as a proxy
Motivation

A new scheme able to distinguish v3 and v4
based on their hashcodes?

5



Hashcodes Generation for LSH

Suppose LSH generates hashcodes of length 4.

q v1 v2 v3 v4 v5 v6 v7 v8

h1

0 1

h2

00 10 11

h3 h40000 1000 1100 1110 1111

distance from q

query point other data points
Hamming distance = 0

Hamming distance = 1Hamming distance = 2
neighbors assigned the same hashcode

We can’t distinguish these two
→ For 3-NN, approximate

Hashcodes as a proxy

Motivation

A new scheme able to distinguish v3 and v4
based on their hashcodes?

5



Outline

1. Background and Motivation

2. NSH Intuition

3. NSH Algorithm

4. Experiments

6



Neighbor-Sensitive Hashing Intuition

We are interested in 3-NN. Hash functions by LSH.

q v1 v2 v3 v4 v5 v6 v7 v8
h1 h2 h3 h4

We care which one is closerWe don’t care which one is closerWe don’t care which one is closer

Observation: h3 and h4 are wasted (for 3-NN).

Our Idea

Generating hash functions close to the query
so that we can better distinguish the close items.

7



Neighbor-Sensitive Hashing Intuition

We are interested in 3-NN. Hash functions by LSH.

q v1 v2 v3 v4 v5 v6 v7 v8
h1 h2 h3 h4

We care which one is closer

We don’t care which one is closerWe don’t care which one is closer

Observation: h3 and h4 are wasted (for 3-NN).

Our Idea

Generating hash functions close to the query
so that we can better distinguish the close items.

7



Neighbor-Sensitive Hashing Intuition

We are interested in 3-NN. Hash functions by LSH.

q v1 v2 v3 v4 v5 v6 v7 v8
h1 h2 h3 h4

We care which one is closer

We don’t care which one is closer

We don’t care which one is closer

Observation: h3 and h4 are wasted (for 3-NN).

Our Idea

Generating hash functions close to the query
so that we can better distinguish the close items.

7



Neighbor-Sensitive Hashing Intuition

We are interested in 3-NN. Hash functions by LSH.

q v1 v2 v3 v4 v5 v6 v7 v8
h1 h2 h3 h4

We care which one is closerWe don’t care which one is closer

We don’t care which one is closer

Observation: h3 and h4 are wasted (for 3-NN).

Our Idea

Generating hash functions close to the query
so that we can better distinguish the close items.

7



Neighbor-Sensitive Hashing Intuition

We are interested in 3-NN. Hash functions by LSH.

q v1 v2 v3 v4 v5 v6 v7 v8
h1 h2 h3 h4

We care which one is closerWe don’t care which one is closer

We don’t care which one is closer

Observation: h3 and h4 are wasted (for 3-NN).

Our Idea

Generating hash functions close to the query
so that we can better distinguish the close items.

7



Neighbor-Sensitive Hashing Intuition

We are interested in 3-NN. Hash functions by LSH.

q v1 v2 v3 v4 v5 v6 v7 v8
h1 h2 h3 h4

We care which one is closerWe don’t care which one is closerWe don’t care which one is closer

Observation: h3 and h4 are wasted (for 3-NN).

Our Idea

Generating hash functions close to the query
so that we can better distinguish the close items.

7



Neighbor-Sensitive Hashing Intuition (cont’d)

Suppose we could (somehow) generate hash functions in this way.

q v1 v2 v3 v4 v5 v6 v7 v8

0000
1000
1100
1110

1111

h1 h2 h3 h4

We could distinguish v3 and v4 based on their hashcodes.
(thus, able to solve 3-NN accurately)

Note: Could not distinguish v6 and v8 based on their hashcodes.

Not an issue for 3-NN

Difference in NSH’s Intuition:

A decade of existing work: small Hamming distance between close
data items

NSH: larger Hamming distance between close items

Seemingly counter-intuitive; however, our paper proves that larger
Hamming distance leads to higher accuracy in general.

different hashcodes same hashcodes

8



Neighbor-Sensitive Hashing Intuition (cont’d)

Suppose we could (somehow) generate hash functions in this way.

q v1 v2 v3 v4 v5 v6 v7 v8

0000
1000
1100
1110

1111

h1 h2 h3 h4

We could distinguish v3 and v4 based on their hashcodes.
(thus, able to solve 3-NN accurately)

Note: Could not distinguish v6 and v8 based on their hashcodes.

Not an issue for 3-NN

Difference in NSH’s Intuition:

A decade of existing work: small Hamming distance between close
data items

NSH: larger Hamming distance between close items

Seemingly counter-intuitive; however, our paper proves that larger
Hamming distance leads to higher accuracy in general.

different hashcodes

same hashcodes

8



Neighbor-Sensitive Hashing Intuition (cont’d)

Suppose we could (somehow) generate hash functions in this way.

q v1 v2 v3 v4 v5 v6 v7 v8

0000
1000
1100
1110

1111

h1 h2 h3 h4

We could distinguish v3 and v4 based on their hashcodes.
(thus, able to solve 3-NN accurately)

Note: Could not distinguish v6 and v8 based on their hashcodes.

Not an issue for 3-NN

Difference in NSH’s Intuition:

A decade of existing work: small Hamming distance between close
data items

NSH: larger Hamming distance between close items

Seemingly counter-intuitive; however, our paper proves that larger
Hamming distance leads to higher accuracy in general.

different hashcodes

same hashcodes

8



Neighbor-Sensitive Hashing Intuition (cont’d)

Suppose we could (somehow) generate hash functions in this way.

q v1 v2 v3 v4 v5 v6 v7 v8

0000
1000
1100
1110

1111

h1 h2 h3 h4

We could distinguish v3 and v4 based on their hashcodes.
(thus, able to solve 3-NN accurately)

Note: Could not distinguish v6 and v8 based on their hashcodes.

Not an issue for 3-NN

Difference in NSH’s Intuition:

A decade of existing work: small Hamming distance between close
data items

NSH: larger Hamming distance between close items

Seemingly counter-intuitive; however, our paper proves that larger
Hamming distance leads to higher accuracy in general.

different hashcodes

same hashcodes

8



Neighbor-Sensitive Hashing Intuition (cont’d)

Suppose we could (somehow) generate hash functions in this way.

q v1 v2 v3 v4 v5 v6 v7 v8

0000
1000
1100
1110

1111

h1 h2 h3 h4

We could distinguish v3 and v4 based on their hashcodes.
(thus, able to solve 3-NN accurately)

Note: Could not distinguish v6 and v8 based on their hashcodes.

Not an issue for 3-NN

Difference in NSH’s Intuition:

A decade of existing work: small Hamming distance between close
data items

NSH: larger Hamming distance between close items

Seemingly counter-intuitive; however, our paper proves that larger
Hamming distance leads to higher accuracy in general.

different hashcodes same hashcodes

8



Neighbor-Sensitive Hashing Intuition (cont’d)

Suppose we could (somehow) generate hash functions in this way.

q v1 v2 v3 v4 v5 v6 v7 v8

0000
1000
1100
1110

1111

h1 h2 h3 h4

We could distinguish v3 and v4 based on their hashcodes.
(thus, able to solve 3-NN accurately)

Note: Could not distinguish v6 and v8 based on their hashcodes.

Not an issue for 3-NN

Difference in NSH’s Intuition:

A decade of existing work: small Hamming distance between close
data items

NSH: larger Hamming distance between close items

Seemingly counter-intuitive; however, our paper proves that larger
Hamming distance leads to higher accuracy in general.

different hashcodes same hashcodes

8



Neighbor-Sensitive Hashing Intuition (cont’d)

Suppose we could (somehow) generate hash functions in this way.

q v1 v2 v3 v4 v5 v6 v7 v8

0000
1000
1100
1110

1111

h1 h2 h3 h4

We could distinguish v3 and v4 based on their hashcodes.
(thus, able to solve 3-NN accurately)

Note: Could not distinguish v6 and v8 based on their hashcodes.

Not an issue for 3-NN

Difference in NSH’s Intuition:

A decade of existing work: small Hamming distance between close
data items

NSH: larger Hamming distance between close items

Seemingly counter-intuitive; however, our paper proves that larger
Hamming distance leads to higher accuracy in general.

different hashcodes same hashcodes

8



Important Difference between LSH and NSH

0 to 10-NN
to 100-NN

max distance

0

b

Original Distance

Ha
m
m
in
g
Di
st
an

ce

A larger slope indicates higher distinguishing-power based on hashcodes.

LSH: uniform distinguishing-power over all distance ranges.
NSH: Higher distinguishing-power for the points

that are close each other.

Key Challenge

How to enlarge the Hamming distances
selectively for close data items?

9



Important Difference between LSH and NSH

0 to 10-NN
to 100-NN

max distance

0

b

LSH

Original Distance

Ha
m
m
in
g
Di
st
an

ce

A larger slope indicates higher distinguishing-power based on hashcodes.

LSH: uniform distinguishing-power over all distance ranges.
NSH: Higher distinguishing-power for the points

that are close each other.

Key Challenge

How to enlarge the Hamming distances
selectively for close data items?

9



Important Difference between LSH and NSH

0 to 10-NN
to 100-NN

max distance

0

b

LSH

NSH

Original Distance

Ha
m
m
in
g
Di
st
an

ce

A larger slope indicates higher distinguishing-power based on hashcodes.

LSH: uniform distinguishing-power over all distance ranges.
NSH: Higher distinguishing-power for the points

that are close each other.

Key Challenge

How to enlarge the Hamming distances
selectively for close data items?

9



Important Difference between LSH and NSH

0 to 10-NN
to 100-NN

max distance

0

b

LSH

NSH

Original Distance

Ha
m
m
in
g
Di
st
an

ce

A larger slope indicates higher distinguishing-power based on hashcodes.

LSH: uniform distinguishing-power over all distance ranges.
NSH: Higher distinguishing-power for the points

that are close each other.

Key Challenge

How to enlarge the Hamming distances
selectively for close data items?

9



Important Difference between LSH and NSH

0 to 10-NN
to 100-NN

max distance

0

b

LSH

NSH

Original Distance

Ha
m
m
in
g
Di
st
an

ce

A larger slope indicates higher distinguishing-power based on hashcodes.

LSH: uniform distinguishing-power over all distance ranges.

NSH: Higher distinguishing-power for the points
that are close each other.

Key Challenge

How to enlarge the Hamming distances
selectively for close data items?

9



Important Difference between LSH and NSH

0 to 10-NN
to 100-NN

max distance

0

b

LSH

NSH

Original Distance

Ha
m
m
in
g
Di
st
an

ce

A larger slope indicates higher distinguishing-power based on hashcodes.

LSH: uniform distinguishing-power over all distance ranges.
NSH: Higher distinguishing-power for the points

that are close each other.

Key Challenge

How to enlarge the Hamming distances
selectively for close data items?

9



Important Difference between LSH and NSH

0 to 10-NN
to 100-NN

max distance

0

b

LSH

NSH

Original Distance

Ha
m
m
in
g
Di
st
an

ce

A larger slope indicates higher distinguishing-power based on hashcodes.

LSH: uniform distinguishing-power over all distance ranges.
NSH: Higher distinguishing-power for the points

that are close each other.

Key Challenge

How to enlarge the Hamming distances
selectively for close data items?

9



Outline

1. Background and Motivation

2. NSH Intuition

3. NSH Algorithm

4. Experiments

10



Neighbor-Sensitive Hashing Overview

q v1 v2 v3 v4 v5 v6 v7 v8

Transform data points to expand the space around the query.
(before generating hash functions)

q v1 v2 v3 v4 v5 v6 v7 v8
h1 h2 h3 h4

We call this new space the transformed space.

Then, generate hash functions on this transformed space.
(thus, convert data points to hashcodes accordingly)

Key Questions

How can we expand the space around a query?

Is it easier if we know the query a priori ?

How can we expand the space around an arbitrary query?

11



Neighbor-Sensitive Hashing Overview

q v1 v2 v3 v4 v5 v6 v7 v8

Transform data points to expand the space around the query.
(before generating hash functions)

q v1 v2 v3 v4 v5 v6 v7 v8
h1 h2 h3 h4

We call this new space the transformed space.

Then, generate hash functions on this transformed space.
(thus, convert data points to hashcodes accordingly)

Key Questions

How can we expand the space around a query?

Is it easier if we know the query a priori ?

How can we expand the space around an arbitrary query?

11



Neighbor-Sensitive Hashing Overview

q v1 v2 v3 v4 v5 v6 v7 v8

Transform data points to expand the space around the query.
(before generating hash functions)

q v1 v2 v3 v4 v5 v6 v7 v8

h1 h2 h3 h4

We call this new space the transformed space.

Then, generate hash functions on this transformed space.
(thus, convert data points to hashcodes accordingly)

Key Questions

How can we expand the space around a query?

Is it easier if we know the query a priori ?

How can we expand the space around an arbitrary query?

11



Neighbor-Sensitive Hashing Overview

q v1 v2 v3 v4 v5 v6 v7 v8

Transform data points to expand the space around the query.
(before generating hash functions)

q v1 v2 v3 v4 v5 v6 v7 v8

h1 h2 h3 h4

We call this new space the transformed space.

Then, generate hash functions on this transformed space.
(thus, convert data points to hashcodes accordingly)

Key Questions

How can we expand the space around a query?

Is it easier if we know the query a priori ?

How can we expand the space around an arbitrary query?

11



Neighbor-Sensitive Hashing Overview

q v1 v2 v3 v4 v5 v6 v7 v8

Transform data points to expand the space around the query.
(before generating hash functions)

q v1 v2 v3 v4 v5 v6 v7 v8
h1 h2 h3 h4

We call this new space the transformed space.

Then, generate hash functions on this transformed space.
(thus, convert data points to hashcodes accordingly)

Key Questions

How can we expand the space around a query?

Is it easier if we know the query a priori ?

How can we expand the space around an arbitrary query?

11



Neighbor-Sensitive Hashing Overview

q v1 v2 v3 v4 v5 v6 v7 v8

Transform data points to expand the space around the query.
(before generating hash functions)

q v1 v2 v3 v4 v5 v6 v7 v8
h1 h2 h3 h4

We call this new space the transformed space.

Then, generate hash functions on this transformed space.
(thus, convert data points to hashcodes accordingly)

Key Questions

How can we expand the space around a query?

Is it easier if we know the query a priori ?

How can we expand the space around an arbitrary query?

11



Neighbor-Sensitive Hashing Overview

q v1 v2 v3 v4 v5 v6 v7 v8

Transform data points to expand the space around the query.
(before generating hash functions)

q v1 v2 v3 v4 v5 v6 v7 v8
h1 h2 h3 h4

We call this new space the transformed space.

Then, generate hash functions on this transformed space.
(thus, convert data points to hashcodes accordingly)

Key Questions

How can we expand the space around a query?

Is it easier if we know the query a priori ?

How can we expand the space around an arbitrary query?

11



Neighbor-Sensitive Hashing Overview

q v1 v2 v3 v4 v5 v6 v7 v8

Transform data points to expand the space around the query.
(before generating hash functions)

q v1 v2 v3 v4 v5 v6 v7 v8
h1 h2 h3 h4

We call this new space the transformed space.

Then, generate hash functions on this transformed space.
(thus, convert data points to hashcodes accordingly)

Key Questions

How can we expand the space around a query?

Is it easier if we know the query a priori ?

How can we expand the space around an arbitrary query?

11



Neighbor-Sensitive Transformation

We expand the space around an arbitrary query using
our proposed Neighbor-Sensitive Transformation (NST).

(e.g., f(v1), f(v2), . . .)

Visual illustration of NSTOur Formal Claim (Theorem 2)

Using NST with regular hash functions
produces higher accuracy than LSH.

12



Neighbor-Sensitive Transformation

We expand the space around an arbitrary query using
our proposed Neighbor-Sensitive Transformation (NST).

(e.g., f(v1), f(v2), . . .)

Visual illustration of NST

Our Formal Claim (Theorem 2)

Using NST with regular hash functions
produces higher accuracy than LSH.

12



Neighbor-Sensitive Transformation

We expand the space around an arbitrary query using
our proposed Neighbor-Sensitive Transformation (NST).

(e.g., f(v1), f(v2), . . .)

Visual illustration of NST

pivot 1

pivot 2

Our Formal Claim (Theorem 2)

Using NST with regular hash functions
produces higher accuracy than LSH.

12



Neighbor-Sensitive Transformation

We expand the space around an arbitrary query using
our proposed Neighbor-Sensitive Transformation (NST).

(e.g., f(v1), f(v2), . . .)

Visual illustration of NST

pivot 1

pivot 2

query

Our Formal Claim (Theorem 2)

Using NST with regular hash functions
produces higher accuracy than LSH.

12



Neighbor-Sensitive Transformation

We expand the space around an arbitrary query using
our proposed Neighbor-Sensitive Transformation (NST).

(e.g., f(v1), f(v2), . . .)

Visual illustration of NST

pivot 1

pivot 2

query

Our Formal Claim (Theorem 2)

Using NST with regular hash functions
produces higher accuracy than LSH.

12



Neighbor-Sensitive Transformation

We expand the space around an arbitrary query using
our proposed Neighbor-Sensitive Transformation (NST).

(e.g., f(v1), f(v2), . . .)

Visual illustration of NST

pivot 1

pivot 2

query

Our Formal Claim (Theorem 2)

Using NST with regular hash functions
produces higher accuracy than LSH.

12



Big Picture: NSH Workflow

Offline Processing

LSH WorkflowOur Contribution

Original Database

Transformed
DB

NST
Hashed DB

hash

Online Processing

Original Query

Transformed
Query

NST
Hashed
Query

hash

Search

13



Big Picture: NSH Workflow

Offline Processing

LSH WorkflowOur Contribution

Original Database

Transformed
DB

NST
Hashed DB

hash

Online Processing

Original Query

Transformed
Query

NST
Hashed
Query

hash

Search

13



Big Picture: NSH Workflow

Offline Processing

LSH WorkflowOur Contribution

Original Database

Transformed
DB

NST

Hashed DB
hash

Online Processing

Original Query

Transformed
Query

NST
Hashed
Query

hash

Search

13



Big Picture: NSH Workflow

Offline Processing

LSH WorkflowOur Contribution

Original Database

Transformed
DB

NST
Hashed DB

hash

Online Processing

Original Query

Transformed
Query

NST
Hashed
Query

hash

Search

13



Big Picture: NSH Workflow

Offline Processing

LSH WorkflowOur Contribution

Original Database

Transformed
DB

NST
Hashed DB

hash

Online Processing

Original Query

Transformed
Query

NST
Hashed
Query

hash

Search

13



Big Picture: NSH Workflow

Offline Processing

LSH WorkflowOur Contribution

Original Database

Transformed
DB

NST
Hashed DB

hash

Online Processing

Original Query

Transformed
Query

NST
Hashed
Query

hash

Search

13



Big Picture: NSH Workflow

Offline Processing

LSH WorkflowOur Contribution

Original Database

Transformed
DB

NST
Hashed DB

hash

Online Processing

Original Query

Transformed
Query

NST

Hashed
Query

hash

Search

13



Big Picture: NSH Workflow

Offline Processing

LSH WorkflowOur Contribution

Original Database

Transformed
DB

NST
Hashed DB

hash

Online Processing

Original Query

Transformed
Query

NST
Hashed
Query

hash

Search

13



Big Picture: NSH Workflow

Offline Processing

LSH WorkflowOur Contribution

Original Database

Transformed
DB

NST
Hashed DB

hash

Online Processing

Original Query

Transformed
Query

NST
Hashed
Query

hash

Search

13



Big Picture: NSH Workflow

Offline Processing LSH Workflow

Our Contribution

Original Database

Transformed
DB

NST
Hashed DB

hash

Online Processing

Original Query

Transformed
Query

NST
Hashed
Query

hash

Search

13



Big Picture: NSH Workflow

Offline Processing LSH WorkflowOur Contribution

Original Database

Transformed
DB

NST
Hashed DB

hash

Online Processing

Original Query

Transformed
Query

NST
Hashed
Query

hash

Search

13



Neighbor-Sensitive Hashing Visualized

We visualized the hash functions
in the original space.

LSH NSH

Dataset: five 2D normal distributions, Generated 4 hash functions

Hash functions for NSH were generated in the transformed space.

14



Neighbor-Sensitive Hashing Visualized

We visualized the hash functions
in the original space.

LSH

NSH

Dataset: five 2D normal distributions, Generated 4 hash functions

Hash functions for NSH were generated in the transformed space.

14



Neighbor-Sensitive Hashing Visualized

We visualized the hash functions
in the original space.

LSH NSH

Dataset: five 2D normal distributions, Generated 4 hash functions

Hash functions for NSH were generated in the transformed space.

14



Outline

1. Background and Motivation

2. NSH Intuition

3. NSH Algorithm

4. Experiments

15



Experiment Setup

Quality Metric

recall(k)@r = (# of true kNN in the retrieved)
k × 100.

Note: Higher recall means either
(i) more accurate searching for the same time budget, or
(ii) faster searching for the same target recall.

Compared Methods: three well-known and five state-of-the-arts
1. Locality Sensitive Hashing (LSH) [Datar et al., 2004]
2. Spectral Hashing (SH) [Weiss et al., 2009]
3. Spherical Hashing (SpH) [Heo et al., 2012]
4. Data Sensitive Hashing (CPH) [Gao et al., 2014]
5. Anchor Graph Hashing (AGH) [Liu et al., 2011]
6. Compressed Hashing (CH) [Lin et al., 2013]
7. Complementary Projection Hashing (CPH) [Jin et al., 2013]
8. Kernelized Supervised Hashing (KSH) [Kulis and Grauman, 2012]

Involves data transformations for different purposes

16



Experiment Setup

Quality Metric

recall(k)@r = (# of true kNN in the retrieved)
k × 100.

Note: Higher recall means either
(i) more accurate searching for the same time budget, or
(ii) faster searching for the same target recall.

Compared Methods: three well-known and five state-of-the-arts
1. Locality Sensitive Hashing (LSH) [Datar et al., 2004]
2. Spectral Hashing (SH) [Weiss et al., 2009]
3. Spherical Hashing (SpH) [Heo et al., 2012]
4. Data Sensitive Hashing (CPH) [Gao et al., 2014]
5. Anchor Graph Hashing (AGH) [Liu et al., 2011]
6. Compressed Hashing (CH) [Lin et al., 2013]
7. Complementary Projection Hashing (CPH) [Jin et al., 2013]
8. Kernelized Supervised Hashing (KSH) [Kulis and Grauman, 2012]

Involves data transformations for different purposes

16



Experiment Setup

Quality Metric

recall(k)@r = (# of true kNN in the retrieved)
k × 100.

Note: Higher recall means either
(i) more accurate searching for the same time budget, or
(ii) faster searching for the same target recall.

Compared Methods: three well-known and five state-of-the-arts

1. Locality Sensitive Hashing (LSH) [Datar et al., 2004]
2. Spectral Hashing (SH) [Weiss et al., 2009]
3. Spherical Hashing (SpH) [Heo et al., 2012]
4. Data Sensitive Hashing (CPH) [Gao et al., 2014]
5. Anchor Graph Hashing (AGH) [Liu et al., 2011]
6. Compressed Hashing (CH) [Lin et al., 2013]
7. Complementary Projection Hashing (CPH) [Jin et al., 2013]
8. Kernelized Supervised Hashing (KSH) [Kulis and Grauman, 2012]

Involves data transformations for different purposes

16



Experiment Setup

Quality Metric

recall(k)@r = (# of true kNN in the retrieved)
k × 100.

Note: Higher recall means either
(i) more accurate searching for the same time budget, or
(ii) faster searching for the same target recall.

Compared Methods: three well-known and five state-of-the-arts
1. Locality Sensitive Hashing (LSH) [Datar et al., 2004]
2. Spectral Hashing (SH) [Weiss et al., 2009]
3. Spherical Hashing (SpH) [Heo et al., 2012]
4. Data Sensitive Hashing (CPH) [Gao et al., 2014]
5. Anchor Graph Hashing (AGH) [Liu et al., 2011]
6. Compressed Hashing (CH) [Lin et al., 2013]
7. Complementary Projection Hashing (CPH) [Jin et al., 2013]
8. Kernelized Supervised Hashing (KSH) [Kulis and Grauman, 2012]

Involves data transformations for different purposes

16



Experiment Setup

Quality Metric

recall(k)@r = (# of true kNN in the retrieved)
k × 100.

Note: Higher recall means either
(i) more accurate searching for the same time budget, or
(ii) faster searching for the same target recall.

Compared Methods: three well-known and five state-of-the-arts
1. Locality Sensitive Hashing (LSH) [Datar et al., 2004]
2. Spectral Hashing (SH) [Weiss et al., 2009]
3. Spherical Hashing (SpH) [Heo et al., 2012]
4. Data Sensitive Hashing (CPH) [Gao et al., 2014]
5. Anchor Graph Hashing (AGH) [Liu et al., 2011]
6. Compressed Hashing (CH) [Lin et al., 2013]
7. Complementary Projection Hashing (CPH) [Jin et al., 2013]
8. Kernelized Supervised Hashing (KSH) [Kulis and Grauman, 2012]

Involves data transformations for different purposes

16



Experimental Claim and Datasets

Our Experimental Claim:

1. NSH achieved “larger Hamming distances between close data
items”

2. NSH showed higher recalls (for fixed hashcode sizes) than
compared methods.

3. NSH showed faster search speed (for target recalls) than
compared methods.

4. NSH’s hash function generation was reasonably fast.

Real-World Datasets:

1. MNIST: 69K hand-written digit images
2. TINY: 80 million image (GIST) descriptors
3. SIFT: 50 million image (SIFT) descriptors

17



Experimental Claim and Datasets

Our Experimental Claim:

1. NSH achieved “larger Hamming distances between close data
items”

2. NSH showed higher recalls (for fixed hashcode sizes) than
compared methods.

3. NSH showed faster search speed (for target recalls) than
compared methods.

4. NSH’s hash function generation was reasonably fast.

Real-World Datasets:

1. MNIST: 69K hand-written digit images
2. TINY: 80 million image (GIST) descriptors
3. SIFT: 50 million image (SIFT) descriptors

17



Experimental Claim and Datasets

Our Experimental Claim:

1. NSH achieved “larger Hamming distances between close data
items”

2. NSH showed higher recalls (for fixed hashcode sizes) than
compared methods.

3. NSH showed faster search speed (for target recalls) than
compared methods.

4. NSH’s hash function generation was reasonably fast.

Real-World Datasets:

1. MNIST: 69K hand-written digit images
2. TINY: 80 million image (GIST) descriptors
3. SIFT: 50 million image (SIFT) descriptors

17



Experimental Claim and Datasets

Our Experimental Claim:

1. NSH achieved “larger Hamming distances between close data
items”

2. NSH showed higher recalls (for fixed hashcode sizes) than
compared methods.

3. NSH showed faster search speed (for target recalls) than
compared methods.

4. NSH’s hash function generation was reasonably fast.

Real-World Datasets:

1. MNIST: 69K hand-written digit images
2. TINY: 80 million image (GIST) descriptors
3. SIFT: 50 million image (SIFT) descriptors

17



Experimental Claim and Datasets

Our Experimental Claim:

1. NSH achieved “larger Hamming distances between close data
items”

2. NSH showed higher recalls (for fixed hashcode sizes) than
compared methods.

3. NSH showed faster search speed (for target recalls) than
compared methods.

4. NSH’s hash function generation was reasonably fast.

Real-World Datasets:

1. MNIST: 69K hand-written digit images
2. TINY: 80 million image (GIST) descriptors
3. SIFT: 50 million image (SIFT) descriptors

17



Experimental Claim and Datasets

Our Experimental Claim:

1. NSH achieved “larger Hamming distances between close data
items”

2. NSH showed higher recalls (for fixed hashcode sizes) than
compared methods.

3. NSH showed faster search speed (for target recalls) than
compared methods.

4. NSH’s hash function generation was reasonably fast.

Real-World Datasets:

1. MNIST: 69K hand-written digit images
2. TINY: 80 million image (GIST) descriptors
3. SIFT: 50 million image (SIFT) descriptors

17



Experimental Claim and Datasets

Our Experimental Claim:

1. NSH achieved “larger Hamming distances between close data
items”

2. NSH showed higher recalls (for fixed hashcode sizes) than
compared methods.

3. NSH showed faster search speed (for target recalls) than
compared methods.

4. NSH’s hash function generation was reasonably fast.

Real-World Datasets:

1. MNIST: 69K hand-written digit images

2. TINY: 80 million image (GIST) descriptors
3. SIFT: 50 million image (SIFT) descriptors

17



Experimental Claim and Datasets

Our Experimental Claim:

1. NSH achieved “larger Hamming distances between close data
items”

2. NSH showed higher recalls (for fixed hashcode sizes) than
compared methods.

3. NSH showed faster search speed (for target recalls) than
compared methods.

4. NSH’s hash function generation was reasonably fast.

Real-World Datasets:

1. MNIST: 69K hand-written digit images
2. TINY: 80 million image (GIST) descriptors

3. SIFT: 50 million image (SIFT) descriptors

17



Experimental Claim and Datasets

Our Experimental Claim:

1. NSH achieved “larger Hamming distances between close data
items”

2. NSH showed higher recalls (for fixed hashcode sizes) than
compared methods.

3. NSH showed faster search speed (for target recalls) than
compared methods.

4. NSH’s hash function generation was reasonably fast.

Real-World Datasets:

1. MNIST: 69K hand-written digit images
2. TINY: 80 million image (GIST) descriptors
3. SIFT: 50 million image (SIFT) descriptors

17



Neighbor-Sensitive Hashing Property

We measured the relationship between
(i) the original distances between pairs of original data items,
(ii) the Hamming distance between pairs of hashcodes.

0 5 10 15
0

5

10

15

20

Original Distance

Ha
m
m
in
g
Di
st
an

ce
LSH NSH

Dataset: MNIST 18



Neighbor-Sensitive Hashing Property

We measured the relationship between
(i) the original distances between pairs of original data items,
(ii) the Hamming distance between pairs of hashcodes.

0 5 10 15
0

5

10

15

20

Original Distance

Ha
m
m
in
g
Di
st
an

ce
LSH NSH

Dataset: MNIST 18



Neighbor-Sensitive Hashing Property

We measured the relationship between
(i) the original distances between pairs of original data items,
(ii) the Hamming distance between pairs of hashcodes.

0 5 10 15
0

5

10

15

20

Original Distance

Ha
m
m
in
g
Di
st
an

ce
LSH NSH

Dataset: MNIST 18



Neighbor-Sensitive Hashing Property

We measured the relationship between
(i) the original distances between pairs of original data items,
(ii) the Hamming distance between pairs of hashcodes.

0 5 10 15
0

5

10

15

20

Average distance to 10-NN

Original Distance

Ha
m
m
in
g
Di
st
an

ce
LSH NSH

Dataset: MNIST 18



Neighbor-Sensitive Hashing Property

We measured the relationship between
(i) the original distances between pairs of original data items,
(ii) the Hamming distance between pairs of hashcodes.

0 5 10 15
0

5

10

15

20

Average distance to 50-NN

Original Distance

Ha
m
m
in
g
Di
st
an

ce
LSH NSH

Dataset: MNIST 18



Neighbor-Sensitive Hashing Property

We measured the relationship between
(i) the original distances between pairs of original data items,
(ii) the Hamming distance between pairs of hashcodes.

0 5 10 15
0

5

10

15

20

Average distance to 100-NN

Original Distance

Ha
m
m
in
g
Di
st
an

ce
LSH NSH

Dataset: MNIST 18



Neighbor-Sensitive Hashing Property

We measured the relationship between
(i) the original distances between pairs of original data items,
(ii) the Hamming distance between pairs of hashcodes.

0 5 10 15
0

5

10

15

20

Average distance to 1000-NN

Original Distance

Ha
m
m
in
g
Di
st
an

ce
LSH NSH

Dataset: MNIST 18



Recall Improvement for Fixed Hashcode Size

Compared search accuracy of 9 different methods (including NSH).

0

10

20

30

40

50

60

Improvement Over:
Re

ca
ll

Im
pr
ov
em

en
t(
%
)

LSH AGH CH SH
CPH SpH DSH KSH

Dataset: TINY, Hashcode size: 64 bits
19



Time Reduction for Fixed Recall

Measured search time of 9 different methods (including NSH).

0

20

40

60

80

100

Improvement Over:
Ti
m
e

Re
du

ct
io
n
(%

)

LSH AGH CH SH
CPH SpH DSH KSH

Dataset: SIFT, Hashcode size: 64 bits, Target recall: 50%
20



Offline Computation Time

Method Hash Function Generation (sec) Hashcode Generation (min)
32bit 64bit 32bit 64bit

LSH 0.38 0.29 22 23
SH 28 36 54 154
AGH 786 873 105 95
SpH 397 875 18 23
CH 483 599 265 266
CPH 34,371 63,398 85 105
DSH 3.14 1.48 24 23
KSH 2,028 3,502 24 29
NSH (Ours) 231 284 37 46

Some learning-based methods (e.g., CPH, KSH) were extremely slow.

Our method was among the fastest.

Dataset: TINY 21



Offline Computation Time

Method Hash Function Generation (sec) Hashcode Generation (min)
32bit 64bit 32bit 64bit

LSH 0.38 0.29 22 23
SH 28 36 54 154
AGH 786 873 105 95
SpH 397 875 18 23
CH 483 599 265 266
CPH 34,371 63,398 85 105
DSH 3.14 1.48 24 23
KSH 2,028 3,502 24 29
NSH (Ours) 231 284 37 46

Some learning-based methods (e.g., CPH, KSH) were extremely slow.

Our method was among the fastest.

Dataset: TINY 21



Offline Computation Time

Method Hash Function Generation (sec) Hashcode Generation (min)
32bit 64bit 32bit 64bit

LSH 0.38 0.29 22 23
SH 28 36 54 154
AGH 786 873 105 95
SpH 397 875 18 23
CH 483 599 265 266
CPH 34,371 63,398 85 105
DSH 3.14 1.48 24 23
KSH 2,028 3,502 24 29
NSH (Ours) 231 284 37 46

Some learning-based methods (e.g., CPH, KSH) were extremely slow.

Our method was among the fastest.

Dataset: TINY 21



Neighbor-Sensitive Effect

NSH was more effective for relatively small k.

1 10 100 1000
(1.4% of DB)

40

60

80

100

NSH recall decreased here!

k

re
ca
ll(
k)
@
10
k

LSH SH SpH NSH

With a bigger dataset,
this “recall-dropping effect” was not observed.

22



Neighbor-Sensitive Effect

NSH was more effective for relatively small k.

1 10 100 1000
(1.4% of DB)

40

60

80

100

NSH recall decreased here!

k

re
ca
ll(
k)
@
10
k

LSH SH SpH NSH

With a bigger dataset,
this “recall-dropping effect” was not observed.

22



Conclusion

1. We have formally shown that counter-intuitive idea can lead to
improved kNN accuracy.

2. Based on the idea, we have proposed a novel hashing-based
search method—Neighbor-Sensitive Hashing.

3. We have empirically demonstrated that our proposed method
could achieve better kNN performance (faster or more accurate)
compared to existing methods.

23



Conclusion

1. We have formally shown that counter-intuitive idea can lead to
improved kNN accuracy.

2. Based on the idea, we have proposed a novel hashing-based
search method—Neighbor-Sensitive Hashing.

3. We have empirically demonstrated that our proposed method
could achieve better kNN performance (faster or more accurate)
compared to existing methods.

23



Conclusion

1. We have formally shown that counter-intuitive idea can lead to
improved kNN accuracy.

2. Based on the idea, we have proposed a novel hashing-based
search method—Neighbor-Sensitive Hashing.

3. We have empirically demonstrated that our proposed method
could achieve better kNN performance (faster or more accurate)
compared to existing methods.

23



Thank You!

23



References I

Charikar, M. S. (2002).
Similarity estimation techniques from rounding algorithms.
In SOTC.
Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. (2004).
Locality-sensitive hashing scheme based on p-stable
distributions.
In SoCG.
Gao, J., Jagadish, H. V., Lu, W., and Ooi, B. C. (2014).
Dsh: data sensitive hashing for high-dimensional k-nnsearch.
In SIGMOD.
Heo, J.-P., Lee, Y., He, J., Chang, S.-F., and Yoon, S.-E. (2012).
Spherical hashing.
In CVPR.

24



References II

Jin, Z., Hu, Y., Lin, Y., Zhang, D., Lin, S., Cai, D., and Li, X. (2013).
Complementary projection hashing.
In ICCV.
Kulis, B. and Grauman, K. (2012).
Kernelized locality-sensitive hashing.
TPAM.
Lin, Y., Jin, R., Cai, D., Yan, S., and Li, X. (2013).
Compressed hashing.
In CVPR.
Liu, W., Wang, J., Kumar, S., and Chang, S.-F. (2011).
Hashing with graphs.
In ICML.

25



References III

Weiss, Y., Torralba, A., and Fergus, R. (2009).
Spectral hashing.
In NIPS.

26



Backup: Neighbor-Sensitive Transformation

We expand the space around a query using
Neighbor-Sensitive Transformation.

A Neighbor-Sensitive Transformation (NST) is simply
a function of data points

(e.g., f(v1), f(v2), . . .)

The function f(·) qualifies for NST
if f(·) satisfies some technical requirements.

(please see our paper)

Our Formal Claim (Theorem 2)

Using NST with regular hash functions produces
higher accuracy than LSH.

27



Backup: Neighbor-Sensitive Transformation

We expand the space around a query using
Neighbor-Sensitive Transformation.

A Neighbor-Sensitive Transformation (NST) is simply
a function of data points

(e.g., f(v1), f(v2), . . .)

The function f(·) qualifies for NST
if f(·) satisfies some technical requirements.

(please see our paper)

Our Formal Claim (Theorem 2)

Using NST with regular hash functions produces
higher accuracy than LSH.

27



Backup: Neighbor-Sensitive Transformation

We expand the space around a query using
Neighbor-Sensitive Transformation.

A Neighbor-Sensitive Transformation (NST) is simply
a function of data points

(e.g., f(v1), f(v2), . . .)

The function f(·) qualifies for NST
if f(·) satisfies some technical requirements.

(please see our paper)

Our Formal Claim (Theorem 2)

Using NST with regular hash functions produces
higher accuracy than LSH.

27



Backup: Neighbor-Sensitive Transformation

We expand the space around a query using
Neighbor-Sensitive Transformation.

A Neighbor-Sensitive Transformation (NST) is simply
a function of data points

(e.g., f(v1), f(v2), . . .)

The function f(·) qualifies for NST
if f(·) satisfies some technical requirements.

(please see our paper)

Our Formal Claim (Theorem 2)

Using NST with regular hash functions produces
higher accuracy than LSH.

27



Backup: Neighbor-Sensitive Transformation (cont’d)

We formally prove that
this function is NST

We don’t formally prove,
but show empirically that
this is NST for arbitrary queries.

Let us assume a query q is known

Then, the following function works as NST for q:

fp(v) = exp
(
−∥p− v∥2

η2

)
where pivot p is a data point close to q.

Of course, q is unknown a priori

Then, the following function is NST for arbitrary q:

f(v) = (fp1(v), . . . , fpm(v))

with multiple pivots p1, . . . ,pm.

28



Backup: Neighbor-Sensitive Transformation (cont’d)

We formally prove that
this function is NST

We don’t formally prove,
but show empirically that
this is NST for arbitrary queries.

Let us assume a query q is known

Then, the following function works as NST for q:

fp(v) = exp
(
−∥p− v∥2

η2

)
where pivot p is a data point close to q.

Of course, q is unknown a priori

Then, the following function is NST for arbitrary q:

f(v) = (fp1(v), . . . , fpm(v))

with multiple pivots p1, . . . ,pm.

28



Backup: Neighbor-Sensitive Transformation (cont’d)

We formally prove that
this function is NST

We don’t formally prove,
but show empirically that
this is NST for arbitrary queries.

Let us assume a query q is known

Then, the following function works as NST for q:

fp(v) = exp
(
−∥p− v∥2

η2

)
where pivot p is a data point close to q.

Of course, q is unknown a priori

Then, the following function is NST for arbitrary q:

f(v) = (fp1(v), . . . , fpm(v))

with multiple pivots p1, . . . ,pm.

28



Backup: Neighbor-Sensitive Transformation (cont’d)

We formally prove that
this function is NST

We don’t formally prove,
but show empirically that
this is NST for arbitrary queries.

Let us assume a query q is known

Then, the following function works as NST for q:

fp(v) = exp
(
−∥p− v∥2

η2

)
where pivot p is a data point close to q.

Of course, q is unknown a priori

Then, the following function is NST for arbitrary q:

f(v) = (fp1(v), . . . , fpm(v))

with multiple pivots p1, . . . ,pm.

28



Backup: Neighbor-Sensitive Transformation (cont’d)

We formally prove that
this function is NST

We don’t formally prove,
but show empirically that
this is NST for arbitrary queries.

Let us assume a query q is known

Then, the following function works as NST for q:

fp(v) = exp
(
−∥p− v∥2

η2

)
where pivot p is a data point close to q.

Of course, q is unknown a priori

Then, the following function is NST for arbitrary q:

f(v) = (fp1(v), . . . , fpm(v))

with multiple pivots p1, . . . ,pm.

28



Backup: Neighbor-Sensitive Transformation (cont’d)

We formally prove that
this function is NST

We don’t formally prove,
but show empirically that
this is NST for arbitrary queries.

Let us assume a query q is known

Then, the following function works as NST for q:

fp(v) = exp
(
−∥p− v∥2

η2

)
where pivot p is a data point close to q.

Of course, q is unknown a priori

Then, the following function is NST for arbitrary q:

f(v) = (fp1(v), . . . , fpm(v))

with multiple pivots p1, . . . ,pm.

28


	Background and Motivation
	NSH Intuition
	NSH Algorithm
	Experiments

