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k-Nearest Neighbors Problem (KNN)

(250, 3, 122, 130, 68, ... )

® query

What are the k most similar items?

(109, 33, 92, 87,161, ... ),
(50, 83, 22, 230, 98, ... ),
(2,183, 59, 18,178, ... ),
(221, 183, 259, 88, 112, ... ),

® database




RNN is Heart of Key Applications

About 42 resuls (0.84 seconds) 3-Class classification (k = 15, weights = 'uniform’)

Image size
650 x 430

Find other sizes of this image:
All sizes - Medium

Best guess for this image: chrome excursion rolitop 37

Excursion Rolltpp 37 Pack \ KmﬂledﬁV\{el(ﬁed | Chrome Industries C laSSiﬁ Cati 0 n Syste mS

P pack v
Shop the Excursion Rolltop 37 pack. 100% waterproof lightweight construction. Made for adventure .
o i o iy g o e RNN Classifiers

Chrome Excursion Rolltop 37 Bike Pack - REl.com

wwwi.rei.com » Cycling » Cycling Backpacks and Bags » Cycling Commuter Backpacks v
$160.00 - In stock

Big enough for overnight camping gear or a full load of groceries, the Chrome Excursion Rolltop 37
Bike Backpack combines super-tough materials with a ..

Visually similar images Report images
n v
[\ / {

Search Engine

Recommender Systems
(Collaborative Filtering)
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Naive Approach to kNN

Naive Approach: linear search with the original representations

Pick the items with the k smallest
user-defined distances

user-dist(q, vs)

Extremely slow

Note: No known fast exact algorithms
for dense, high-dimensional vectors
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Locality-Sensitive Hashing for RNN

LSH: Use similarity-preserving hash functions

—[ Hamming-dist(h(q), h(v;)) o user-dist(q, v;) l

h(a)

Look up hashcodes — lookup operations in a
Hashed Query hash table — fast.

Perfect hash functions may not exist,
or extremely hard to find
— approximate.

h(vi) h(v2) h(vs) h(vs)

h(vs) h(ve) h(vz) h(vs)
Note: Longer hashcode makes the
h(vs) h(vio) h(vn) h(vi2) searching slower.

Hashed DB

First proposed by [Datar et al,, 2004] and [Charikar, 2002] 4
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Hashcodes Generation for LSH

Suppose LSH generates hashcodes of length 4.

hs h, hs hy

0000 1000 1100 1110 1M

Vs

We can't distinguish these two
— For 3-NN, approximate

Motivation

A new scheme able to distinguish vz and v,
based on their hashcodes?
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Neighbor-Sensitive Hashing Intuition

We are interested in 3-NN. Hash functions by LSH.

hy h, hs hy
q vi ViVvz Vg Vs Ve V7 Vs

Observation: h; and h, are (for 3-NN).

Our ldea

Generating hash functions close to the query
so that we can better distinguish the close items.
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Suppose we could (somehow) generate hash functions in this way.
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same hashcodes

We could distinguish v; and v, based on their hashcodes.
(thus, able to solve 3-NN accurately)

Note: Could not distinguish vg and vg based on their hashcodes.

Not an issue for 3-NN
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Neighbor-Sensitive Hashing Intuition (cont’d)

Suppose we could (somehow) generate hash functions in this way.
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Difference in NSH’s Intuition:

A decade of existing work: small Hamming distance between close
data items

NSH: larger Hamming distance between close items

Seemingly counter-intuitive; however, our paper proves that larger
Hamming distance leads to higher accuracy in general.
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Key Challenge

How to enlarge the Hamming distances
selectively for close data items?
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A larger slope indicates higher distinguishing-power based on hashcodes.

LSH: uniform distinguishing-power over all distance ranges.

NSH: Higher distinguishing-power for the points
that are close each other.



3. NSH Algorithm
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Neighbor-Sensitive Hashing Overview

qa vi VoV Vv Vs Vg % Vg

Transform data points to expand the space around the query.
(before generating hash functions)

Vi Vs Vg V7 Vs
\
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Neighbor-Sensitive Hashing Overview

qa vi VoV Vv Vs Vg % Vg

Key Questions

How can we expand the space around a query?
Is it easier if we know the query a priori ?

How can we expand the space around an arbitrary query?

Then, generate hash functions on this transformed space.
(thus, convert data points to hashcodes accordingly)

1



Neighbor-Sensitive Transformation

We expand the space around an arbitrary query using
our proposed Neighbor-Sensitive Transformation (NST).

(eg, fln), f(va), ...)



Neighbor-Sensitive Transformation

We expand the space around an arbitrary query using
our proposed Neighbor-Sensitive Transformation (NST).
(eg, fln), f(va), ...)

Visual illustration of NST



Neighbor-Sensitive Transformation

We expand the space around an arbitrary query using
our proposed Neighbor-Sensitive Transformation (NST).

(eg, fln), f(va), ...)

Visual illustration of NST

o egles
.

pivot



Neighbor-Sensitive Transformation

We expand the space around an arbitrary query using
our proposed Neighbor-Sensitive Transformation (NST).

(eg, fln), f(va), ...)

Visual illustration of NST

query

o egles
.

pivot



Neighbor-Sensitive Transformation

We expand the space around an arbitrary query using
our proposed Neighbor-Sensitive Transformation (NST).

(eg, fln), f(va), ...)

Visual illustration of NST
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Neighbor-Sensitive Transformation

We expand the space around an arbitrary query using
our proposed Neighbor-Sensitive Transformation (NST).

(eg, fln), f(va), ...)

\imciial (lliimrdvatinnm ~AF NICT

Our Formal Claim (Theorem 2)

Using NST with regular hash functions
produces higher accuracy than LSH.

AR Ve

pivot 1
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Neighbor-Sensitive Hashing Visualized

We visualized the hash functions
in the original space.

/

LSH NSH

Dataset: five 2D normal distributions, Generated 4 hash functions

Hash functions for NSH were generated in the transformed space.
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Quality Metric

recall(k)@r (# of true RNN |kn the retrieved) T

Note: Higher recall means either
(i) more accurate searching for the same time budget, or
(ii) faster searching for the same target recall.

Compared Methods: three well-known and five state-of-the-arts
Locality Sensitive Hashing (LSH) [Datar et al., 2004]

Spectral Hashing (SH) [Weiss et al,, 2009]

Spherical Hashing (SpH) [Heo et al,, 2012]

Data Sensitive Hashing (CPH) [Gao et al, 2014]

Anchor Graph Hashing (AGH) [Liu et al,, 2011]

Compressed Hashing (CH) [Lin et al., 2013]

Complementary Projection Hashing (CPH) [Jin et al., 2013]
Kernelized Supervised Hashing (KSH) [Kulis and Grauman, 2012]
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Experiment Setup

Quality Metric

recall(k)@r (# of true RNN |kn the retrieved) T

Note: Higher recall means either
(i) more accurate searching for the same time budget, or
(ii) faster searching for the same target recall.

Compared Methods: three well-known and five state-of-the-arts
1. Lqcalitv Sensitive Hashing (1 SH) [Datar et al 20041

2 Involves data transformations for different purposes

3! Spherical Hashing (SpH) [Heo et al,, 2012]

4| Data Sensitive Hashing (CPH) [Gao et al., 2014]

5. Anchor Graph Hashing (AGH) [Liu et al., 2011]

6

7

8

. Compressed Hashing (CH) [Lin et al., 2013]
. Complementary Projection Hashing (CPH) [Jin et al,, 2013]
. Kernelized Supervised Hashing (KSH) [Kulis and Grauman, 2012]

16
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Experimental Claim and Datasets

Our Experimental Claim:

1. NSH achieved “larger Hamming distances between close data
items”

2. NSH showed higher recalls (for fixed hashcode sizes) than
compared methods.

3. NSH showed faster search speed (for target recalls) than
compared methods.

4. NSH's hash function generation was reasonably fast.

Real-World Datasets:

1. MNIST: 69K hand-written digit images
2. TINY: 80 million image (GIST) descriptors
3. SIFT: 50 million image (SIFT) descriptors
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Neighbor-Sensitive Hashing Property

We measured the relationship between
(i) the original distances between pairs of original data items,

(ii) the Hamming distance between pairs of hashcodes.
[Average distance to 1000fNN]
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Recall Improvement for Fixed Hashcode Size

Compared search accuracy of 9 different methods (including NSH).

Improvement Over:
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Dataset: TINY, Hashcode size: 64 bits
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Time Reduction for Fixed Recall

Measured search time of 9 different methods (including NSH).

Improvement Over:
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Dataset: SIFT, Hashcode size: 64 bits, Target recall: 50%
20



Offline Computation Time

— Hash Function Generation (sec) | Hashcode Generation (min)

32bit 64bit 32bit 64bit
LSH 0.38 0.29 22 23
SH 28 36 54 154
AGH 786 873 105 95
SpH 397 875 18 23
CH 483 599 265 266
CPH 34,371 63,398 85 105
DSH 3.14 1.48 24 23
KSH 2,028 3,502 24 29
NSH (Ours) 231 284 37 46

Dataset: TINY

21



Method

Hash Function Generation (sec)

Hashcode Generation (min)

32bit 64bit 32bit 64bit
LSH 0.38 0.29 22 23
SH 28 36 54 154
AGH 786 873 105 95
SpH 397 875 18 23
CH 483 599 265 266
CPH 34,371 63,398 85 105
DSH 3.14 1.48 24 23
KSH 2,028 3,502 24 29
NSH (Ours) 231 284 37 46

Some learning-based methods (e.g., CPH, KSH) were extremely slow.
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Method

Hash Function Generation (sec)

Hashcode Generation (min)

32bit 64bit 32bit 64bit
LSH 0.38 0.29 22 23
SH 28 36 54 154
AGH 786 873 105 95
SpH 397 875 18 23
CH 483 599 265 266
CPH 34,371 63,398 85 105
DSH 3.14 1.48 24 23
KSH 2,028 3,502 24 29
NSH (Ours) 231 284 37 46

Some learning-based methods (e.g., CPH, KSH) were extremely slow.

Dataset: TINY

Our method was among the fastest.

Offline Computation Time
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Neighbor-Sensitive Effect

NSH was more effective for relatively small k.

recall(R)@10k
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Neighbor-Sensitive Effect

NSH was more effective for relatively small k.

recall(R)@10k

100

80

60

40

-e- LSH

—h— SH

sagan SpH

NSH recall decregsed here!

10

100
k

1000
(1.4% of DB)

With a bigger dataset,
this “recall-dropping effect” was not observed.
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Conclusion

1. We have formally shown that counter-intuitive idea can lead to
improved RNN accuracy.
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Conclusion

1. We have formally shown that counter-intuitive idea can lead to
improved RNN accuracy.

2. Based on the idea, we have proposed a novel hashing-based
search method—Neighbor-Sensitive Hashing.

3. We have empirically demonstrated that our proposed method
could achieve better kNN performance (faster or more accurate)
compared to existing methods.
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Thank You!
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Backup: Neighbor-Sensitive Transformation

We expand the space around a query using
Neighbor-Sensitive Transformation.
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Backup: Neighbor-Sensitive Transformation

We expand the space around a query using
Neighbor-Sensitive Transformation.

A Neighbor-Sensitive Transformation (NST) is simply
a function of data points

(e.g., ]C(V‘\),JC(VZ)7 .. )

The function f(-) qualifies for NST
if f(-) satisfies some technical requirements.
(please see our paper)

Our Formal Claim (Theorem 2)

Using NST with regular hash functions produces
higher accuracy than LSH.
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Backup: Neighbor-Sensitive Transformation (cont’d)

Let us assume a query g is known
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where pivot p is a data point close to q.
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Backup: Neighbor-Sensitive Transformation (cont’d)

Let us assume a query g is known

Then, the following function works as NST for g:

fo(v) = exp <_||P;_2V||2>

where pivot p is a data point close to q.
We formally prove that

this function is NST
Of course, g is unknown a priori

Then, the following function is NST for arbitrary g:

V) = (o (V) -+ fou (V)

with multiple pivots p1,...,pm. We don't formally prove

but show empirically that

this is NST for arbitrary queries. |
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