
Technical Report for

“Neighbor-Sensitive Hashing”

In this manuscript, we present the proofs to the theorems and lemmas in
our main paper “Neighbor-Sensitive Hashing”. In the future, this manuscript
may be augmented to include more details on our experiment setting and im-
plementation.

Theorem 1. Let q be a query, and v1 and v2 two data items. Also, let h be
an LSH-like hash function consisting of b independent bit functions h1, . . . , hb.
Then, the following relationship holds for all v1 and v2 satisfying 0.146 < ‖q −
v1‖ < ‖q−v2‖: A larger value of E‖h(q)−h(v2)‖H −E‖h(q)−h(v1)‖H implies
a larger value of Pr(‖h(q) − h(v1)‖H < ‖h(q) − h(v2)‖H), i.e., the probability
of successful ordering of v1 and v2 based on their hashcodes.

Proof. Let us denote the probability that an individual bit function hi where
i = 1, 2, . . . , b assigns q and v1 into different hash bits is p1, and the probability
that assigns q and v2 into different hash bits is p2. A reasonable bit function
satisfies p1 < p2 ≤ 0.5. Note that E‖h(q) − h(v2)‖H − E‖h(q) − h(v1)‖H =
b · (p2 − p1). There are two cases in which the above expression increases: first,
p1 becomes smaller, and second, p2 becomes larger. Let us start with the first
case.

To compute the probability distribution of the difference of hamming dis-
tances, Pr(‖h(q)−h(v2)‖H−‖h(q)−h(v1)‖H), we take a look at the distribution
of ‖h(q) − h(v1)‖H . Since b number of bit functions that compose the h are
independent of one another, ‖h(q)− h(v1)‖H follows the binomial distribution
with mean bp1 and variance bp1(1 − p1). Similarly, ‖h(q) − h(v2)‖H follows
the binomial distribution with mean bp2 and variance bp2(1 − p2). Exploiting
the fact that binomial distributions can be closely approximated by the nor-
mal distributions with the same mean and the variance, and that the difference
between two normal distributions follows another normal distribution, we can
state the following:

Pr(‖h(q)− h(v1)‖H < ‖h(q)− h(v2)‖H)

≈
∫ ∞
0

N (bp2 − bp1, bp2(1− p2) + bp1(1− p1)) dx

where N denotes the probability distribution function of a normal distribution.
Note that the above quantity is a function of two values: mean and standard
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deviation. Due to the shape of a normal distribution, higher mean and smaller
standard deviation results in a higher chance of successful ordering of v2 and
v1 based on their hashcodes. If p1 decreases, the mean of the above normal
distribution increases, and the standard deviation of the distribution decreases.
Therefore, the quantity of our interest increases. (End of the first case)

Next, let us discuss the case where p2 increases. This case asks for more
careful analysis because the standard deviation of the normal distribution in-
creases. Recall that the area computed by the integration is a function of the
mean and the standard deviation of the normal distribution; thus, if the mean
increases faster than the standard deviation, the quantity of our interest still
increases. Let us compute the condition that the mean increases faster. Since
we are dealing with the case in which p2 increases,

∂(bp2 − bp1)

∂p2
= b (1)

must be larger than

∂
√
bp2(1− p2) + bp1(1− p1)

∂p2
= b · 1− 2p2

2
√
p2 − p22

(2)

The condition for this is p2 > 0.146. (End of the second case)

Theorem 2. Let h be an LSH-like hash function and f be a q-(ηmin, ηmax)-
sensitive transformation. Then, for all constants ti and tj , where ηmin ≤ ti ≤
tj ≤ ηmax, we have the following:

E(‖h(f(q))− h(f(vj))‖H − ‖h(f(q))− h(f(vi))‖H)

> E(‖h(q)− h(vj)‖H − ‖h(q)− h(vi)‖H)

where the expectations are computed over data items vi and vj chosen uniformly
at random among data items whose distances to q are ti and tj , respectively.

Proof. Since h is LSH-like,

E(‖h(f(q))− h(f(vj))‖H) = Ev(Eh(‖h(f(q)))− h(f(vj)‖H))

= Ev(c · b · ‖f(q)− f(vj)‖)
= c · b · Ev(‖f(q)− f(vj)‖)

where Eh is an expectation over h and Ev is an expectation over vj . Similarly,

E(‖h(f(q))− h(f(vi))‖H) = c · b · Ev‖f(q)− f(vi)‖
E(‖h(q)− h(vj)‖H) = c · b · Ev‖q − vj‖
E(‖h(q)− h(vi)‖H) = c · b · Ev‖q − vi‖
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where Ev is either an expectation over vi or an expectation over vj depending
on the random variable involved. Due to the third property of NST,

Ev‖f(q)− f(vj)‖ − Ev‖f(q)− f(vi)‖ > ‖q − vj‖ − ‖q − vi‖

Therefore, the relationship we want to show also holds.

Lemma 1. A pivoted transformation fp satisfies the second property of NST,
i.e., monotonicity.

Proof. Let q be a query, p be a pivot, and t be an arbitrary positive constant.
Also, v is a data item chosen uniformly at random among items whose distance
to q is t. In addition, let α denote an angle between −→qv and −→qp. Since v is chosen
uniformly at random, α is a random variable whose probability distribution
function is a uniform between 0 and 2π.

To show the monotonicity, it is enough to show the following:

E(|f(q)− f(v)|)
∂t

≥ 0 =⇒ E

(
∂|f(q)− f(v)|

∂t

)
≥ 0

The interchange of E and the partial derivative is valid since the random variable
inside the expectation (v) only depends on α.

To simplify the notations, let tq = ‖p − q‖ and tv = ‖p − v‖. Then, t2v =
t2 + t2q − 2tqt cosα from the law of cosines. Note that tq is constant while tv
varies depending on t and α. Therefore,

2tv
∂tv
∂t

= 2t− 2tq cosα,
∂tv
∂t

=
t− tq cosα

tv

We divide this proof into two cases: (1) t ≥ 2tq and (2) t < 2tq. For the first
case when t ≥ tq, we get tv ≥ tq using the triangular inequality. As a result,
|f(q)− f(v)| = exp(−t2q/η2)− exp(−t2v/η2). Therefore,

∂|f(q)− f(v)|
∂t

=
2tv
η2

t− tq cosα

tv
exp

(
− t

2
v

η2

)
From tv ≥ tq, we know 2t− 2tq cosα ≥ t ≥ 0, so

E

(
∂|f(q)− f(v)|

∂t

)
≥ 0

For the second case, when t < 2tq, the sign of f(q) − f(v) depends on the
sign of tq − tv. In other words,

∂|f(q)− f(v)|
∂t

=
f(q)− f(v)

|f(q)− f(v)|
2tv
η2

t− tq cosα

tv
exp

(
− t

2
v

η2

)
=

f(q)− f(v)

|f(q)− f(v)|
2(t− tq cosα)

η2
exp

(
−
t2 + t2q − 2tqt cosα

η2

)
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We further simplify the above expression by substituting l1η and l2η for t and
tq, respectively, and we treat the expression as a function of l1 and l2. Then,
we obtain

g(l1, l2) =
1

2π

∫ 2π

0

f(q)− f(v)

|f(q)− f(v)|
2(l1 − l2 cosα)

η
exp(−l21 + l22 − 2l1l2 cosα) dα

Unfortunately, showing g(l1, l2) > 0 for all l1 and l2 such that 0 < l2 < 0.5
and 0 < l1 < 2l2 < 1 analytically is difficult because a closed-form solution of
the above integration does not exist. However, we can obtain high confidence
from numerical analysis due to the following reasons:

1. g(l1, l2) is a continuous function of l1 and l2.

2. The function of the form x exp(x) does not fluctuate fast and is can be
approximated well by piece-wise linear functions.

Therefore, if we pick four closely located points in the space of l1 and l2 and the
values of g(l1, l2) at all those four points are positive, we obtain high confidence
that the function values of the area enclosed by those four points will be positive
as well.

For this, we generated 1,000,000 pairs of (l1, l2) where l1 and l2 are evenly
spaced between 0 and 1 and between 0 and 0.5, respectively. Next, we computed
the value of the function g(l1, l2) for all 1,000,000 pairs. In the end, we confirmed
that every pair we generated are positive. This result implies that g(l1, l2) > 0
for all l1 and l2 such that 0 < l2 < 0.5 and 0 < l1 < 2l2 < 1.

Lemma 2. A pivoted transformation fp with ‖p−q‖ < η/2 and η < 0.2 satisfies
the third property of NST, i.e., Larger Gap, for (ηmin, ηmax) = (0.13η, 1.6η).
That is, fp is a q-(0.13η, 1.6η)-sensitive transformation.1

Proof. Let q be a query, p be a pivot, and t be an arbitrary positive constant.
Also, v is a data item chosen uniformly at random among items whose distance
to q is t. In addition, let α denote an angle between −→qv and −→qp. Since v is chosen
uniformly at random, α is a random variable whose probability distribution
function is a uniform between 0 and 2π.

To show the monotonicity, it is enough to show the following:

E(|f(q)− f(v)|)
∂t

≥ 1 =⇒ E

(
∂|f(q)− f(v)|

∂t

)
≥ 1

for t ∈ (0.13η, 1.6η). The interchange of E and the partial derivative is valid
since the random variable inside the expectation (v) only depends on α.

1When working with non-normalized distances, η should be smaller than 0.2 · tmax, where tmax

is the maximum distance between data items.
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To simplify the notations, let tq = ‖p − q‖ and tv = ‖p − v‖. Then, t2v =
t2 + t2q − 2tqt cosα from the law of cosines. Note that tq is constant while tv
varies depending on t and α. Therefore,

2tv
∂tv
∂t

= 2t− 2tq cosα,
∂tv
∂t

=
t− tq cosα

tv

and

∂|f(q)− f(v)|
∂t

=
f(q)− f(v)

|f(q)− f(v)|
2tv
η2

t− tq cosα

tv
exp

(
− t

2
v

η2

)
=

f(q)− f(v)

|f(q)− f(v)|
2(t− tq cosα)

η2
exp

(
−
t2 + t2q − 2tqt cosα

η2

)

We substitute l1η and l2η for t and tq, respectively, and consider the above
expression as a function of l1 and l2. Then, we should show that

g(l1, l2) =
1

2π

∫ 2π

0

f(q)− f(v)

|f(q)− f(v)|
2(l1 − l2 cosα)

η
exp(−l21 + l22 − 2l1l2 cosα) dα ≥ 1

Since η < 0.2, it is enough to show that

g′(l1, l2) =
1

2π

∫ 2π

0

f(q)− f(v)

|f(q)− f(v)|
2(l1 − l2 cosα) exp(−l21 + l22 − 2l1l2 cosα) dα ≥ 0.2

for all l1 and l2 such that 0 < l2 < 0.5 and 0.13 < l1 < 1.6. Similar to Lemma 1,
analytically computing the above integration is not easy because a closed-form
solution of the above integration does not exist. Thus, to numerically verify this
lemma, we generated 1,000,000 pairs of (l1, l2) where l1 and l2 are evenly spaced
between 0.13 and 1.6 and between 0 and 0.5, respectively. Next, we computed
the value of g′(l1, l2) for all pairs. In the end, we confirmed that every pair we
generated is not smaller than 0.204.
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