BlinkML: Efficient Maximum Likelihood Estimation with Probabilistic Guarantees

Yongjoo Park Jingyi Qing Xiaoyang Shen Barzan Mozafari

University of Michigan
Machine learning workloads are slow and costly

More data ⇒ slower training
- **1 hour 35 minutes** for 37M training examples

Often training **multiple** models
- New data becoming available
- Feature engineering

Criteo dataset, Logistic Regression with L-BFGS optimization algorithm
Key Question: Can sampling accelerate ML training?

SQL analytics

$$\text{sum}(X) = (1/N) \sum_{i=1..N} X_i \approx (1/n) \sum_{i=1..n} X_i$$

ML training

iterative gradient computation

$$\text{grad} = (1/N) \sum_{i=1..N} g(x_i | \theta_t) \approx (1/n) \sum_{i=1..n} g(x_i | \theta_t)$$

[Park et al. SIGMOD'18]
A platform-independent approach

Do similar properties hold?
Three key challenges

Model quality guarantee

• No closed-form solution: \(\text{grad}(\theta_N) = (1/N) \sum_{i=1..N} g(x_i | \theta_N) = 0 \)

• CLT or Hoeffding is NOT directly applicable

Generalization

• Logistic Regression ≠ Principal Component Analysis

Efficiency

• Too many approximate models > (longer) A single full model
Our core contribution

A system for **efficient, quality-guaranteed** ML training

It supports models trained via **maximum likelihood estimation**

1. Linear Regression
2. Logistic Regression (#1 classifier according to 2017 Kaggle survey)
3. Probabilistic PCA
4. Generalized Linear Models, ...

https://www.kaggle.com/surveys/2017

We bring **Fisher’s** theory to practice, and apply it in a **novel way** for **quality-guaranteed, sampling-based** ML
To put things into context

We: **Uniform random sampling** is **effective**!

Much different from the work on biased/importance sampling

1. simple
2. no *a priori* knowledge required
3. still significant speedups

Generalize AQP to **multivariate** models

Orthogonal to AutoML
<SystemOverview>...
BlinkML: interface

1. model type (e.g., Logistic Regression)
2. training set (of size N)
3. accuracy (e.g., 98%)

Accuracy $1 - \epsilon$ means $E_x[1(\text{full}(x) \neq \text{approx}(x))] \leq \epsilon$ with high probability (e.g., 95%)
BlinkML: internal workflow

Step 1: **profile** model/data complexity

Step 2: **estimate** min sample size

 Crucial component (\(= \text{AccEstimator}\)):
 estimate accuracy of approx model w/o full model

Step 3: **train** an approximate model
BlinkML: architecture

BlinkML Core (= AccEstimator)

- **Convex Optimization** (scipy.optimize)
- **Gradient Computation** (numpy & pyspark)
- **Model Specification** (e.g., LinearReg)

1. ease of implementation
2. compatibility with existing ecosystems
3. distributed computation
...</SystemOverview>
<QualityGuarantee>...
Goal: bounding the prediction difference

The expected prediction difference:

$$\text{diff}(\text{full, approx}) = E_x[\mathbf{1}(\text{approx}(x) \neq \text{full}(x))]$$

(for classification tasks)

Our goal:

$$\text{diff}(\text{full, approx}) \leq \varepsilon \text{ with high probability}$$

e.g., $\varepsilon = 0.01 \rightarrow 99\%$ same predictions

How can we estimate $\text{diff}(\text{full, approx})$?
Difference in params \rightarrow \texttt{diff}(full, approx)

A model is a function of parameters

A logistic regression model predicts:

1 (pos) if $1/(1+\exp(-\theta^T x)) > 0.5$
0 (neg) otherwise

f(x; θ)

If we know θ_N and θ_n
we can infer \texttt{diff}(f(x; θ_N), f(x; θ_n))

BUT, we don’t know θ_N. How to infer the difference?
Infer probabilistically w/ Monte Carlo simulation

We estimate \texttt{diff(full, approx)} using \texttt{samples from Pr(θ)}

\[
\text{diff}(\text{full, approx}) = E_x[1(f(x; θ_N) \neq f(x; θ_n))]
\]

\[
\begin{array}{ccccc}
θ_N,1 & θ_N,2 & θ_N,3 & θ_N,4 & θ_N,5 \\
\text{diff(full, approx)} & 0.01 & 0.005 & 0.015 & 0.01 & 0.008
\end{array}
\]

We say \texttt{diff(full, approx) ≤ 0.01} with 80% probability (4/5)

BlinkML uses thousands of samples for accurate estimation

How do we obtain \texttt{samples} from Pr(θ)?
Obtain **samples** from Fisher + optimization

Based on Fisher’s theory, we get:

$$\theta_N - \theta_n \sim \text{Normal}(0, \alpha_n H^{-1} J H^{-1})$$

θ_N: param of full model
θ_n: param of approx model
α_n: scale parameter
H^{-1}: model complexity
J: data variance

The size of covariance matrix, $O(#\text{features}^2)$, makes sampling **slow**

We employ mathematical tricks

$$z \sim N(0, I) \rightarrow L z \sim N(0, LL^T) \quad \text{sampling} = \text{matrix multiplication}$$

We obtain L such that $LL^T = H^{-1} J H^{-1}$ directly from gradients using the information matrix equality
Recap of our quality guarantee mechanism

For a certain sample size n:
1. Obtain a parameter θ_n and a factor L
2. Obtain samples of full model parameters θ_N
3. Compute many $\text{diff}(\text{full}, \text{approx})$ using samples
4. Ensure $\text{diff}(\text{full}, \text{approx}) \leq \epsilon$ with high probability

We must train an approximate model to obtain θ_n

In our paper: performs this by training at most TWO approx models
... </QualityGuarantee>
<Experiments>...
Models and datasets

<table>
<thead>
<tr>
<th>Model</th>
<th>Dataset</th>
<th># of examples</th>
<th># of features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Regression</td>
<td>Gas</td>
<td>4M</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Power</td>
<td>2M</td>
<td>114</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>Criteo</td>
<td>46M</td>
<td>998,922</td>
</tr>
<tr>
<td></td>
<td>HIGGS</td>
<td>11M</td>
<td>28</td>
</tr>
<tr>
<td>Max Entropy Classifier</td>
<td>MNIST</td>
<td>8M</td>
<td>784</td>
</tr>
<tr>
<td></td>
<td>Yelp</td>
<td>5M</td>
<td>100,000</td>
</tr>
<tr>
<td>Probabilistic PCA</td>
<td>MNIST</td>
<td>8M</td>
<td>784</td>
</tr>
<tr>
<td></td>
<td>HIGGS</td>
<td>11M</td>
<td>28</td>
</tr>
</tbody>
</table>

Publicly available **GB-scale** machine learning datasets

The number of features range from 28 to **1 million**
BlinkML offers large speedups

Speedups adjust based on requested accuracy
BlinkML offers **large** speedups

Logistic Regression, HIGGS

Max Entropy Classifier, Yelp

Speedups adjust based on **model/data complexity**
(see more systematic study in our paper)
Approx. models satisfy requested accuracy

Accuracy guarantees were conservative (which is not bad)
Faster hyperparameter searching with BlinkML

BlinkML found the best model at itr #91 (in 6 mins, test acc 75%)

Regular could not find it in 1 hour

Logistic Regression, Criteo

Regular
3 models in 30 mins

BlinkML
961 models in 30 mins
(sample size: 10K–9M)
... </Experiments>
Summary

1. Extended *sampling-based* analytics to commonly used ML

2. Our approach offers *probabilistic quality-guarantees*

3. **Core:** uncertainty on params → *uncertainty on predictions*

4. Empirical studies show that *min sample size* automatically adjusts
What’s next?

Can we extend this approach to other models?
 • SVM, ensemble models, deep neural nets, ...

Run BlinkML directly on SQL engines?
 • Relational DBs are well optimized for structured data
 • No need to move/migrate data

Propagating errors to downstream applications
 • Formal semantics required
Thank you!