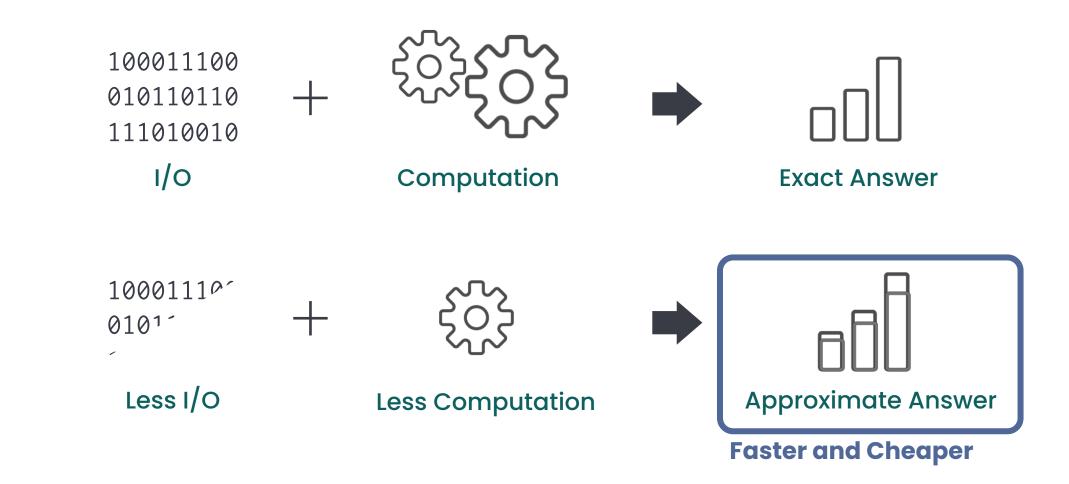
Approximation is Bliss

Approximate Computing in Database Systems

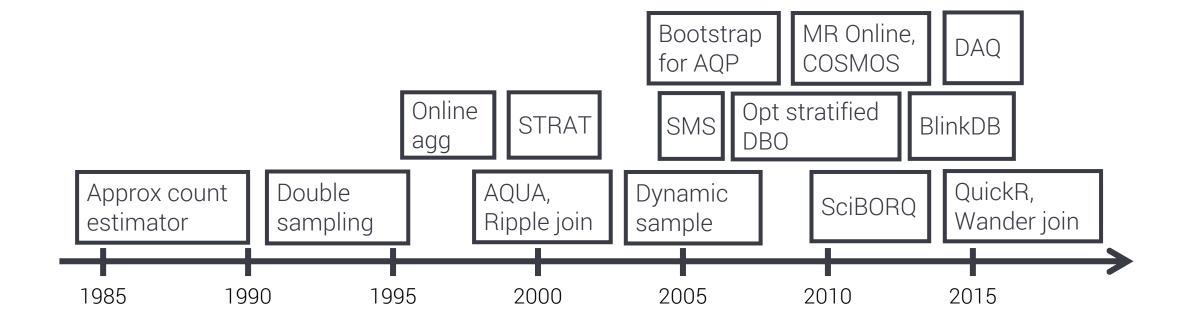
Yongjoo Park @Michigan

Approximate query processing is becoming more valuable

What is approximate query processing (AQP)?

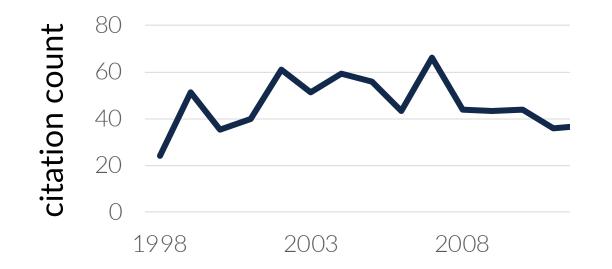


AQP research has a long history



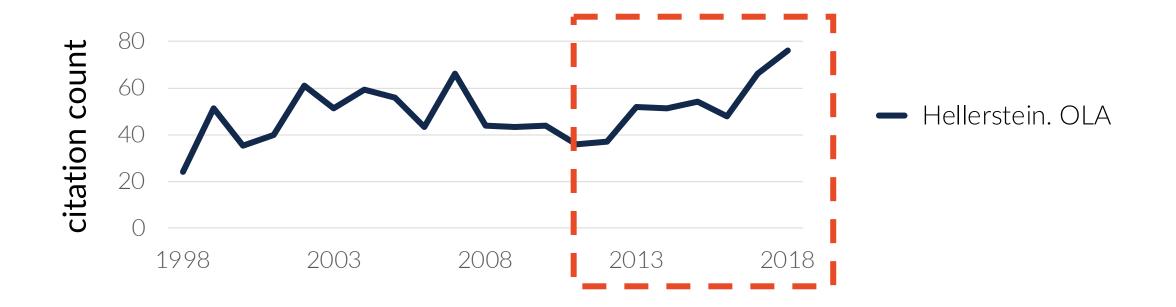
35 years of research

Resurgence of AQP research

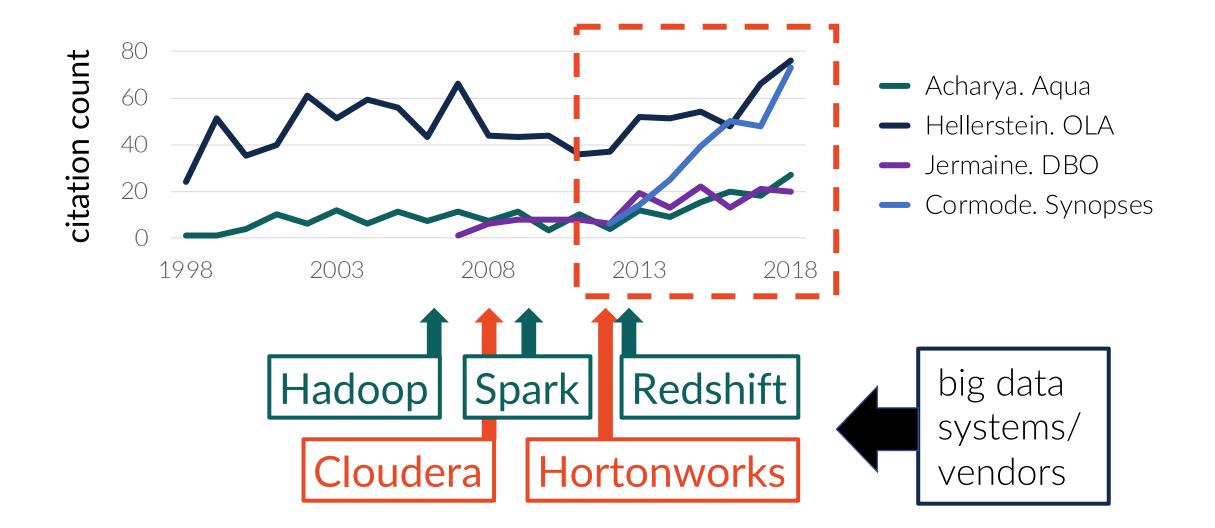


- Hellerstein. OLA

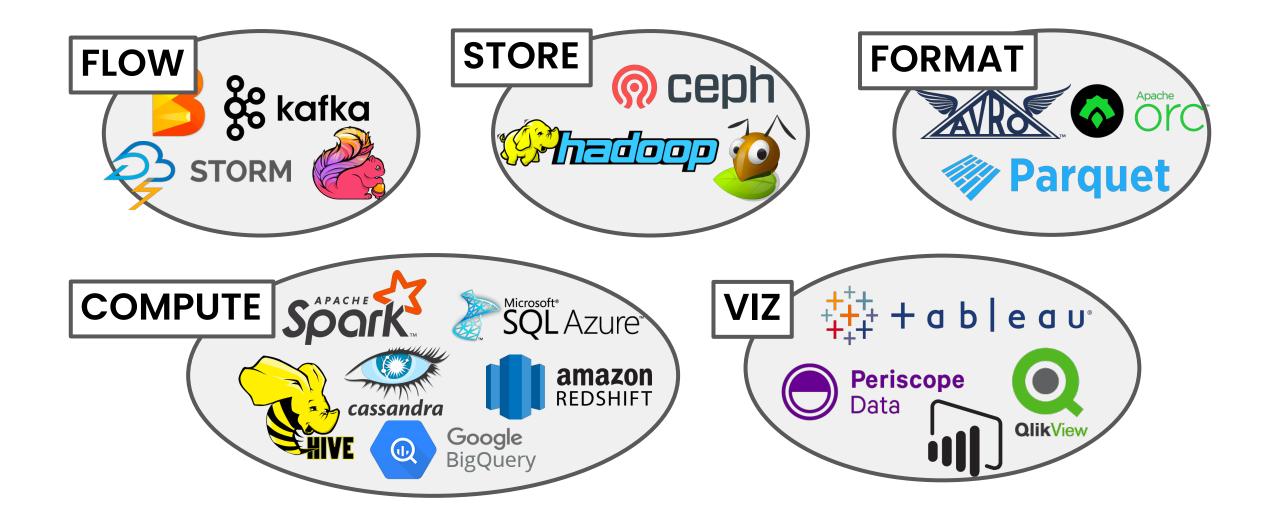
Resurgence of AQP research



Resurgence of AQP research



Today's big data ecosystems



Today's big data ecosystems

Can process a large volume of data Slow (esp. for ad-hoc queries) Costly

Big data analytics is slow

One of the largest retail corporations

Collects 70GB+ data/day

Ad-hoc queries with customer demographic filters

dunhumby

One of the biggest customer science company in UK

Basic statistics + ML

A location intelligence company

Billions of GPS points

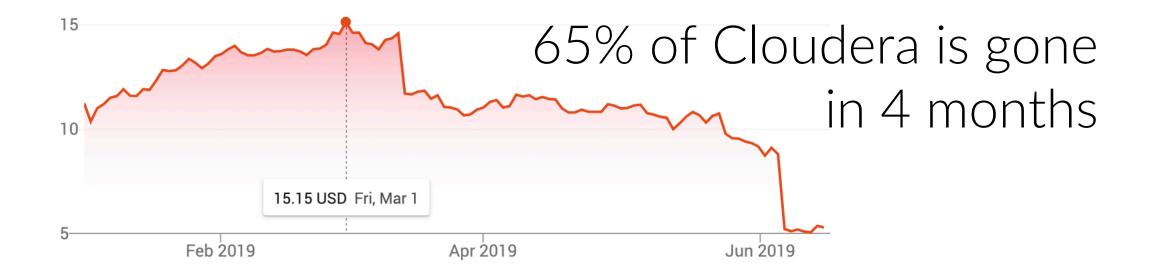
Real-time responses required for its webinterface

Using **commercial** clusters (from MapR, Amazon, ...) **10-20 minute** query latencies

Big data analytics is costly

The cost increases with more data & queries

Big data: too much cost for its value?



We generate woefully **low amounts of value** relative to the amount spent.

Jesse Anderson, Director of Big Data Institute

https://www.jesse-anderson.com/2019/06/i-come-not-to-bury-cloudera-but-to-praise-it/

Approximation is bliss

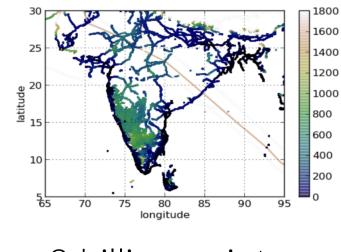
100x faster or cheaper by sacrificing 0.1% accuracy $\operatorname{err} = f(\frac{1}{n} - \frac{1}{N}) \le f(\frac{1}{n})$

Faster: less I/O, less computation

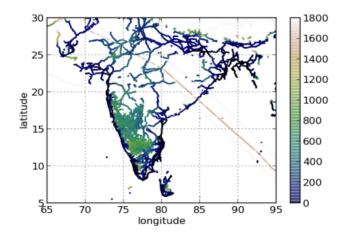
Cheaper: same latency with less resource

AQP can produce indistinguishable results

EXACT



2 billion points Took **71 mins**



1 million points Took **3 secs**

[Park et al. ICDE'16]

Our contributions

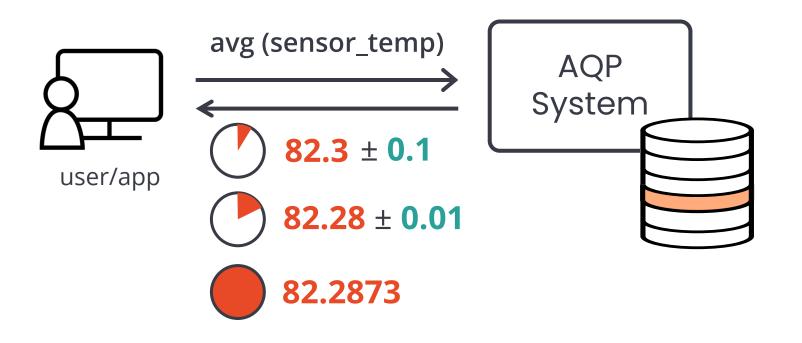
35 years of research, little industry adoption
 Our effort: Universal AQP [Park et al. SIGMOD'18]

sum, avg, count, count-distinct

2. Limited to simple aggregationOur effort: AQP for ML [Park et al. SIGMOD'19]

<Universal AQP>...

```
Typical AQP systems
```



[Aqua '99, JoinSynopses '99, BlinkDB '13, WanderJoin '16, Quickr '16, and more]

Barriers in adopting AQP

Vendor resistance: AQP requires significant changes to DBMS internals

- Traditional DBMS: stable codebases, reluctance to major changes
- Newer SQL-on-Hadoop: busy catching up on standard features

User resistance:

- users don't typically abandon their existing systems
- vendor lock-in makes data migration almost impossible

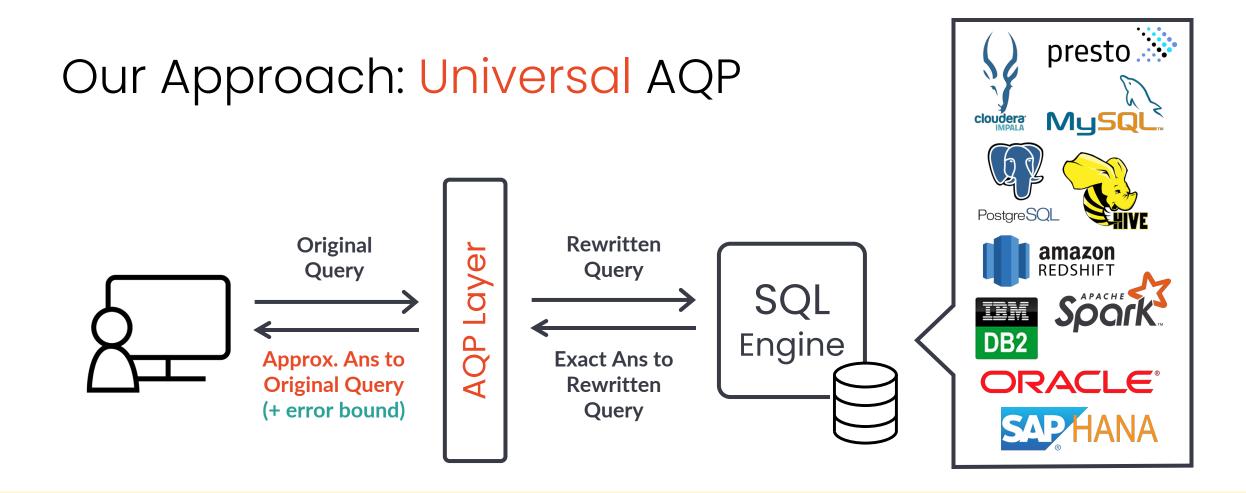
[BlinkDB '13, G-OLA '15, Join Synopses '99, WanderJoin ,16, ABM '14, ...]

One example of user resistance

Since our organization is huge, it would be **difficult** to ask infrastructure team to **apply patch on spark** for supporting BlinkDB.

Giridhar Addepalli, Walmart

https://github.com/sameeragarwal/blinkdb/issues/14



The rewritten query runs faster because it uses a **sample table** instead of the **original table**

Universal AQP: criteria

VerdictDB

https://github.com/mozafari/verdictdb

Consistency

We focus on **append-only** data

Accuracy guarantee

New error estimation logic

Efficiency

Comparable to built-in AQP

VerdictDB: offers large speedups

Datasets:

- 500GB TPC-H benchmark
- 200GB Instacart dataset

Workloads:

• TPC-H, microbenchmark

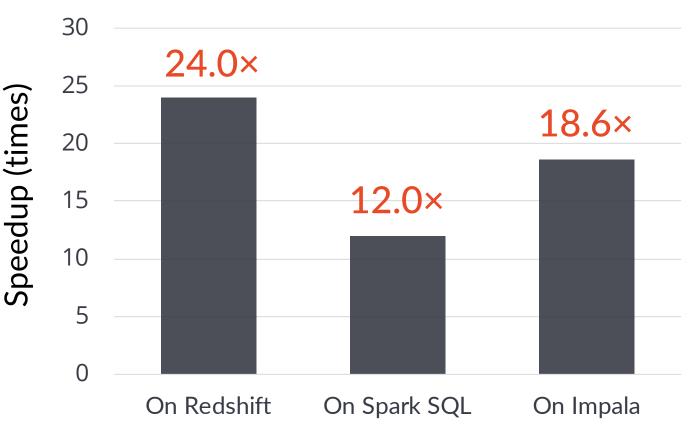
Data Systems:

- Redshift, Spark SQL, Impala
- 10+1 r4.xlarge cluster

Used columnar formats for all systems

2% relative errors

Including all overhead



VerdictDB: comparable to built-in AQP

Datasets:

• 200GB Instacart dataset

Workloads:

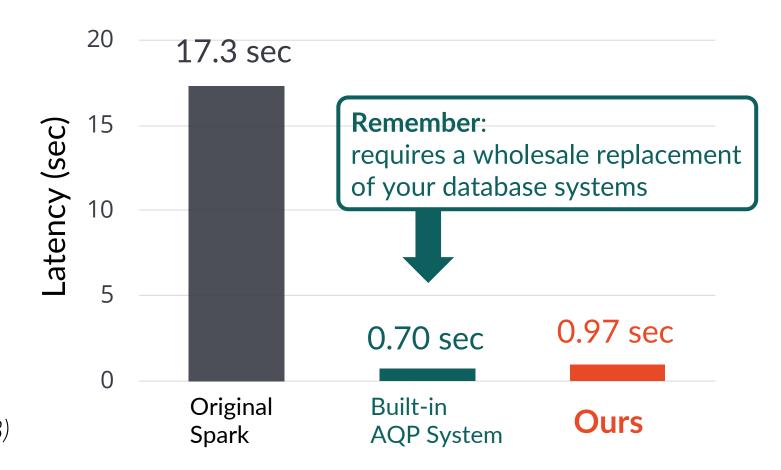
• microbenchmark

Data Systems:

- Spark SQL
- 10+1 r4.xlarge cluster

Built-in AQP System:

SnappyData (*a commercial version of BlinkDB*)



Jupyter VerdictDB on Presto Last Checkpoint: an hour ago (unsaved changes)

File		Edit	View		Insert		Cell	Kernel		Widgets		Help	
B	+	≫	⇮	ß	•	¥	N Run		С	₩	Code	÷,	

Trusted / Python 3 O

Sales by Aisle
In []:] I
In []:
In []:
In []:
In []:
In []:
In []:
In []:
In []:
In []:
In []:
In []:
In []:
In []:
In []:
In []:
In []:
In []:

...</Universal AQP>

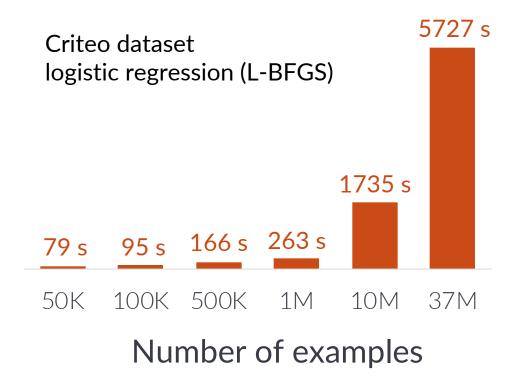
<AQP for ML>...

Machine learning can be time-consuming

More data, slower training

We train multiple models

- new training data
- feature engineering [Anderson, CIDR'13]



Sampling may accelerate training

Training: iterative gradient computation

$$\Theta_{t+1} = \Theta_t - \alpha \cdot \text{grad}(\Theta_t)$$
 (until convergence)

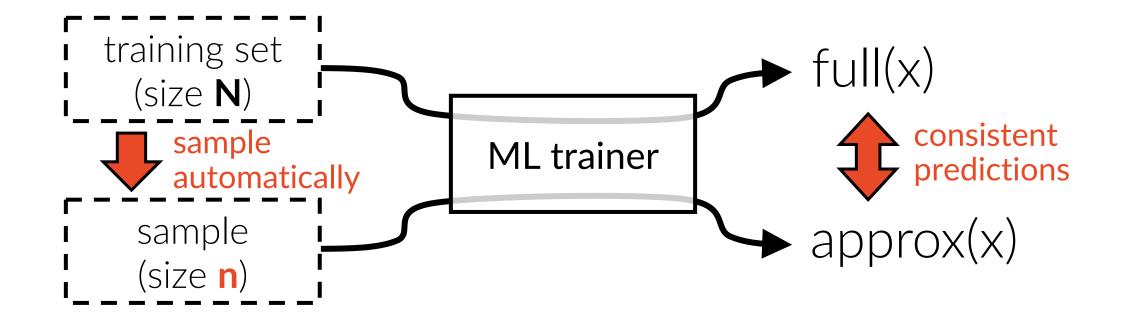
Sampling: gradient computation becomes **faster** grad(θ_t) = (1/N) $\sum_{i=1..N} f(x_i | \theta_t)$

Benefits if (savings from sampling) > (increase in # of iterations)

1. Ad-hoc approach: no accuracy guarantee

2. Biased sampling: not efficient for feature engineering

BlinkML: uniform sampling w/ accuracy guarantee

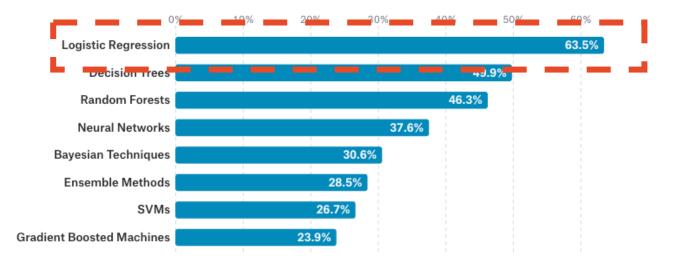


Consistency is expressed as $E_x[full(x) \neq approx(x)] < \varepsilon$ with high probability

BlinkML supports commonly-used models

Supports convex MLE models:

- linear regression
- logistic regression
- probabilistic PCA
- generalized linear models



https://www.kaggle.com/surveys/2017/

Accuracy guarantee exploits the property of MLE models:

$$grad(\Theta_{opt}) = (1/N) \sum_{i=1..N} f(x_i | \Theta_{opt}) = 0$$

BlinkML introduces computational optimization

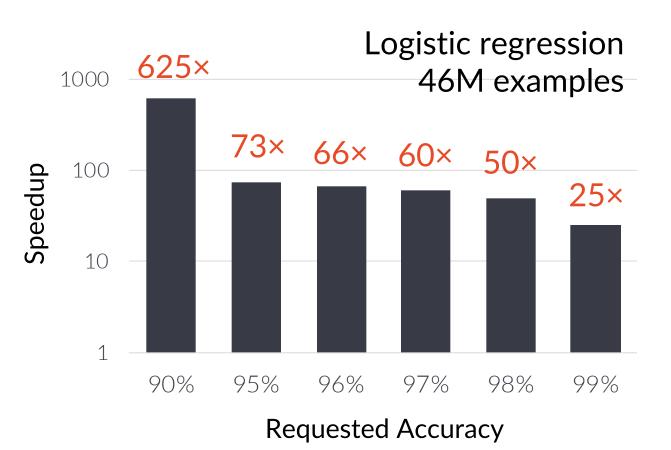
BlinkML offers large speedups

Datasets:

- Size: 2.86 GB on disk
- # of features: 998K

Systems:

- Optimization: Scipy
- 5+1 m5.2xlarge



...</AQP for ML>

1. AQP: becoming more valuable

2. VerdictDB: enables AQP on any platforms

3. BlinkML: trains MLE models with bounded errors

Thank you!