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1. INTRODUCTION
In traditional databases, past queries are rarely useful for

speeding up future queries. Besides a few limited benefits
(see related work below), the computation performed
for answering past queries is often wasted. However,
in an AQP context (e.g., in BlinkDB [1]), there are ample
opportunities to re-use previous computations. This is due
to the fact that the answer to a query always reveals some
fuzzy knowledge about the answer to another one, even if
the two queries access different tuples and columns. This is
because the answers to both queries come from the same un-
derlying distribution which has produced the entire dataset.
In other words, each answer reveals a piece of infor-
mation about this unknown underlying distribution.
This has long been the essence of machine learning, where
past observations are used to improve future predictions.

Our key goal in this paper is to apply the same principle
but in a query processing setting, which we call database
learning (DBL). To pursue this idea, in a nutshell, we treat
approximate answers to past queries as observations, and
update our belief on the underlying data based on these
observations. Statistically, this update process corresponds
to obtaining a posterior probability distribution by condi-
tioning on observations, and we refer to database learning’s
current understanding of underlying data as model. In sys-
tem perspective, database learning works as a middle-ware
between exploratory data analysts and a sample-based ap-
proximate query processor [1, 5], as depicted in Figure 1,
and improves sample-based answers based on its model. In
other words, database learning adds learning ability to con-
ventional memory-less approximate database systems.1

2. RELATED WORK
In traditional databases, the work performed for answer-

ing past queries is entirely wasted (i.e., does not benefit fu-
ture queries), except in a few limited cases.

1. Adaptive indexing and view selection: in predictable
workloads, columns and expressions commonly used
by past queries provide hints on which indices [4, 6, 7]
or materialized views [2] to build;

2. Caching : the recently accessed tuples will be in mem-
ory when future queries access the same tuples.

Adaptive indexing schemes (e.g., database cracking [6])
incrementally refine indices as queries arrive, on demand.
However, there is still an exponential number of possible

1Database learning works with any approximate database systems
that returns error-accompanied answers, but our discussion will pri-
marily focus on sample-based approximate database systems.
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Figure 1: Our proposed system (database learning) is placed be-
tween data analysts and an approximate DBMS, and improves
the answers by the approximate DBMS.

column-sets that can be indexed. Similarly, materialized
views are only beneficial when new queries are completely
contained in the precomputed blocks of data. Database
learning is fundamentally different and superior for several
reasons:

1. Unlike indices and materialized views, database learn-
ing incurs little storage overhead as it only retains
past N queries and their aggregate answers.

2. While indices and materialized views grow in size when
the data grows, database learning is oblivious to the
data size as it only stores final aggregate answers.

3. While existing approaches are effective only when new
queries touch prepared areas, database learning can
benefit future queries even when their tuples are not
contained in previous queries. This is because the
trained probabilistic model spans the entire data
(see Figure 2)

3. OUR APPROACH
Similar to many learning agents in AI research, the inter-

nal model of database learning captures the most-likely data
characteristics based on observed pairs of query and its (ap-
proximate) answer. Database learning relies on the model to
produce probabilistic answers to important subsets of ana-
lytic SQL queries. The learning nature of database learning
makes the system most suitable for building an adaptive
(and intelligent) system. More specifically, database learn-
ing is temporally incremental — the model becomes more
sophisticated as more queries are processed — and spatially
adaptive — the model accurately reflects a certain area as
the query access pattern shifts to that area. Database learn-
ing is most appealing in situations in which fast approximate
answers are preferred over slower exact answers, since it of-
fers significant speed/accuracy benefits over basic sample-
based approximate query processors.

The database learning’s novel model-driven query answer-
ing mechanism is made possible due to the following contri-
butions of this work: important query statistics (means and
covariances between query answers) derived from a random
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(a) After two queries. Incorrect confidence interval due to lack of
evidence; we have a safeguard mechanism for such cases.)
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(b) After five queries. Data characteristics were well-learned.
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(c) After ten queries. Accurate for most of areas.

Figure 2: Example of internal model updates.

tuple generation model, and an efficient inference mecha-
nism for computing new query answers using a joint prob-
ability distribution function over query answers. Here, the
joint probability distribution function over query answers
is determined based on the query statistics using a sim-
ple but powerful statistical principle called the principle of
maximum entropy [8]. This principle determines the most-
likely explanation of aggregate values given limited amount
of knowledge extracted from past queries, which may include
the queries with complex conditional expressions in their
aggregate functions, or the queries with multiple arbitrary
columns in their filtering predicates or group-by statements.
After all, this model is used to enhance the accuracies of
sample-based approximate aggregate answers at the cost of
negligible runtime overheads.

Figure 2 illustrates that how database learning updates its
probabilistic model upon processing of ad-hoc queries. Note
that, although we depict queries on a one-dimensional space
for simplicity, database learning can handle much more com-
plex tables. Due to the model’s probabilistic nature, the
model is accompanied by confidence intervals; we drew 95%
confidence intervals using shaded areas in the figure with
the model’s best estimations at their centers. For reference,
we also accompanied true aggregate values which were com-
puted by issuing large number of queries with very small
non-overlapping ranges in their filters. In Figure 2(a) when
only two available queries are given, database learning has
insufficient amount of information to describe the entire
data. However, as more queries are available (Figures 2(b)
and 2(b)), database learning’s internal model learning’s in-
ternal model tells a convincing explanation of underlying
data even though the past queries overlapped in arbitrary
and complex patterns and some of the areas were even un-
tapped by all of those queries. Of course, database learning
may not exactly coincide with the ground-truth values for
the entire area; however, this is an expected outcome stem-
ming from the adaptive behavior of database learning.
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Figure 3: Query processing speedup of database learning (DBL)
compared to SparkSQL and BlinkDB. For BlinkDB and database
learning, we report their runtime for 0.5% relative error.

4. EXPERIMENTS
We have implemented database learning on top of Spark

SQL [3]; database learning modified regular approximate
query answers computed by Spark SQL using different sizes
of samples. We refer to the sample-based system as BlinkDB,
whereas we refer to the exact answer computed based on the
original dataset simply as SparkSQL. For performance com-
parison, we used a TPC-H 100G dataset with query no. 6;
multiple queries were generated using different parameter
values. Database learning used the first 20 queries to learn
its internal model. Then, using the next unseen 100 queries,
we compared SparkSQL, BlinkDB, and our system (data-
base learning, or DBL). For this experiment, we used 20 re-
cent generation EC2 instances as Spark’s worker nodes and
cached all datasets in memory before running queries.

Figure 3 compares the query latencies of three systems
(SparkSQL, BlinkDB, and DBL). For BlinkDB and DBL,
we used a respective sample size that produce the average of
0.5% relative error. Since DBL uses the computations from
the past, the sample used by DBL was much smaller than
BlinkDB. After all, database learning showed more than 15x
speedup compared to SparkSQL and about 1.8 time speedup
compared to BlinkDB, respectively.
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