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1. Motivation 2. Problem

e Graph size often dominates the efficiency of graph
analytic workloads!

e Graphs are ubiquitous and huge in size in various domains

e Graph sparsification is a data reduction technique where
an edge-reduced graph of similar structure is preferred.

e Derive G' C G suchthat F(G') =~ F(G)
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3. Contributions

We propose a deep reinforcement
learning algorithm for objective invariant
graph sparsification

« We model graph
sparisification as a POMDP
(87 A? P7 R7 Q) 07 7)
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e Solved using Double DQN
The policy outputs a value for i
each edge and we prune the
edge with the highest value

» Highly configurable through reward

function
Any scalar objective that can be modeled as a
function of the graph can be optimized!

a; = arg max Q(o¢, a)
e Shown to outperform all other baselines acH;
on all graphs and objectives
e Time Complexity of pruning

9 T edges is O(|Ex|T)

5. Experiments & Conclusion

e Outperforms on all tested benchmarks:
PageRank, single-pair shortest path, community detection

o Outperforms all tested baseline methods:
Random Edge (RE), Local Degree (LD), Edge Forest Fire (EFF), Algebraic Distance (AD), L-Spar (LS), Simmelian Backbone (SB), Quadrilateral Simmelian
Backbone (QSB)
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(a) PageRank Preservation (b) Community Structure Preservation (c) Shortest Path Distance Preservation

=—e=— SparRL === |D === EFf =—¢= AD) === RE  ==e= |§ o= QSB == SB

o SparRL is the first task-adaptive and effective reinforcement

learning-based framework for graph sparsification
Generality evident by its performance on multiple objectives on a variety of

Table 1: SparRL compared against t-spanner for various
stretch values ¢ over CiteSeer. (x%: edge kept ratio)

graphs Method t=3 t=4 =8 t=16 =32
(99.65%) (99.63%) (97.82%) (93.74%) (90.78%)

e In theofuture, we p!an to extend SparRL . . o t-spanner 0.0082  0.0054 0.0405 0.1187  0.1911
Test in a parallel setting, repurpose for graph learning tasks (e.g., link prediction, SparRL 00031 0.0043 0.0350 0.0974 0.1820

label classification etc.), and test on a dynamic graph setting
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