DeepOLA: Online Aggregation for Deeply Nested Queries Nikhil Sheoran

University of Illinois at Urbana-Champaign

Introduction

AQP techniques provide fast but "accurate" enough results for aggregate queries.

- Online Aggregation (OLA) is an AQP technique where estimates continuously improve.
- Eventually provides correct results.
- Lack of general framework to handle OLA for complex deeply nested queries.
- We provide DeepOLA, a generalized framework and implementation to perform Online Aggregation for arbitrarily nested queries.

DeepOLA: Framework

- **Incremental Dataframe**
 - Append (DA): Rows are only appended.
 - Merge (DM): Rows can be update/append.
 - Complete (DC): No change.
- **Incremental Operations**
 - Define merge operation for each operation *R*
 - $R(I \cup \Delta I) = merge(R(I), R(\Delta I), c)$

Operation	Input	Output	
Filtering (Π)	{DA, DM, DC}	{DA, DM, DC}	
Projection (σ)	{DA, DM, DC}	{DA, DM, DC}	
JOIN or UNION	DA, {DA, DM, DC}	{DA, DM, DA}	
JOIN or UNION	DM, {DM, DC}	{DM, DM}	
JOIN or UNION	DC, DC	DC	
GROUP BY AGG	{DA,DM,DC}	{DM,DM,DC}	

DeepOLA: Query Processing

- Parse the input query into a DAG.
- **Mergeable Nodes**

\subset	FROM	I(lineite	em))	
		`			
		¥			
WILEDEA				02 14)	_

- A node *n* is mergeable if no node in the paths from the root nodes (including) to that node (excluding) are of type DM. For example:
- FROM, WHERE, GROUP-BY-AGG are mergeable.
- SELECT is not mergeable.

Query Processing

- Compute operations on the new partition of data, ΔT till the *last mergeable* node.
- Merge the *previous result*, R(I) and result on ΔT , $R(\Delta T)$ at the *last mergeable* node.
- Recompute operations of all nodes after this node.
- A nested sub-query is a sub-graph of the DAG.
 - The evaluation methodology remains the same.

WHERE(I_shipdate > date 1998-03-14)			
GROUP BY AGG(l_shipmode, COUNT(*))			
SELECT(l_shipmode,ct)			

- TPC-H Dataset. Scale = 1.
- Compared against Postgres with indexes.
- **Optimizations**
 - Re-use of hash-table across partitions.
 - Merge join of ordered tables.
 - Concurrent execution.
- Analysis of Query 5
 - 4 Hash Joins: Re-use of hash-tables across partitions.
 - 1 Merge Join
- 1st Result is the result after processing first partition (of fixed size of 100K rows)

Query	Postgres (in ms)	DeepOLA (in ms)	DeepOLA 1 st Result (in ms)	Relative Error 1 st Result (%)
q1	2307	3560	203	1.65%
q5	13521	2620	226	10.1%
q6	1668	2490	72	5.68%
q12	765	2470	79	7.76%
q14	640	2550	238	11.8%