
Lineage Querying at Interactive speeds using DuckDB 
Sughosh Kaushik 

Department of Computer Science, Columbia University

Motivation

DuckDB users can query lineage at interactive speeds

Background

Data structures in DuckDB’s operator execution encode lineage.
Naive Solution

Translate the data structure to a relational table and query it using 
DuckDB’s engine. The average cost of lineage capture with 
translation is published for executing TPC-H queries with a scale 
factor of 1. The translation is expensive! So we stop it.

Control flow in DuckDB

Lineage Capture

Base query plan

Lineage query plan

Main Challenges
Lineage Query Execution Base Query Execution

1

2

3

1. During lineage capture, 
we build indexes over 
pinned data structures. 
The pointer represents 
an index to access the 
lineage of the previous 
operator. 

2. Answering lineage 
queries involves joining 
operator lineages. We 
skip DuckDB’s planning 
phase using a 
PRAGMA function 
since its unable to 
generate the optimal 
join plan. In the 
definition of PRAGMA, 
we create a custom 
plan. 

3. The custom plan is built 
using DuckDB’s 
physical index join 
operators. The pointer 
is passed between the 
join operators, and we 
see lineage querying in 
action.

R
es

ul
ts

Time taken to query a 
random output tuple 
from the given TPC-H 
queries scale factor 1. 
The time is compared 
between joining 
relational tables and 
indexed data 
structures

Li
ne

ag
e

Applications: Data Debugging, Data explanations etc.


