COLUMBIA
UNIVERSITY

otz

Lineage Querying at Interactive speeds using DuckDB

Department of Computer Science, Columbia University

Sughosh Kaushik

A

| ACM SIGMOD

PODS 2022

Philadelphia, PA, USA

Motivation

Query lineage for a random tuple in the ouput relation

print(conn.fetchall())

PragmaTraceLineage 0

[(2,)]

Lineage of 0th tuple in the ouput is

conn.execute("PRAGMA trace lineage='OFF'")
conn.execute("PRAGMA lineage query('SELECT * from Personal Info WHERE age < 30 ORDER BY age DESC;', 'VALUE',0)")
print("Lineage of 0th tuple in the ouput is

)

DuckDB users can query lineage at interactive speeds

Lineage

Query Q : Select * from Personal Info where age < 30

Personal_Info
Name Age
Alice 25 | O
Jack 31 1
Bob 26 2

Applications: Data Debugging, Data explanations etc.

Lineage querying as a function of time

Result of Q Lineage of Q
Name Age o]
Alice 25 |0 0
Bob 26 1 1

Results

0 50 100 150 200 250
Time in ms

Personal Info

Name Age
Alice 25
Bob 31
Jack 26
Eve 14
Tom 12
Kar 80

Lineage Capture

Background
Filter DuckDB

- N SelVec
Age<30 [— 0

- / 2
Chunk 1

e ™ SelVec
Age<30 [—r 0

o J 1
Chunk 2

SelVec
] 0
Pin into 2
memory
SelVec
’ 0

1

Lineage Query Execution

Query execution

Binder

Lineage Query
execution

Logical Planner

Custom planner

Physical planner

p

Executor

Executor

Control flow in DuckDB 2

Main Challenges

Time taken to query a
random output tuple
from the given TPC-H
queries scale factor 1.
The time Is compared
between joining
relational tables and
indexed data

 gtryctures

Base Query Execution

@

1. During lineage capture,

we build indexes over

pinned data structures.
The pointer represents
an index to access the
lineage of the previous
operator.

Base query plan

Data structures in DuckDB'’s operator execution encode lineage.

Naive Solution

oid

iid

—

SelVec
0 Translate
;2 as d
DuckDB

table

Translate the data structure to a relational table an
DuckDB’s engine. The average cost of lineage capture with
translation is published for executing TPC-H queries with a scale

Trans

Capture

lation

cost of capturing lineage

1 1 I

200

400
Time

factor of 1. The translation is expensive! So we stop it.

d query it using

600

Lineage of 1st output tuple =

Lineage query plan 3

0
Limit
1

2. Answering lineage

gueries involves joining
operator lineages. We
skip DuckDB's planning
phase using a
PRAGMA function
since its unable to
generate the optimal
join plan. In the
definition of PRAGMA,
we create a custom
plan.

pointer

\|
0 O
2 1

Lineage Capture 1

. The custom plan is built

using DuckDB's
physical index join
operators. The pointer
IS passed between the
join operators, and we
see lineage querying in
action.




