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The Problem: LSM-tree based storage engines suffer with empty queries and skew workloads
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LSM-tree based storage LSM-tree performance relies on filters Common queries incur Repeated queries are an issue for current
engines are everywhere to prevent unnecessary disk I/Os many unnecessary |/Os storage engines and call for adaptivity

Our Contribution: Cache-Backed Bloom Filters (CBBFs)
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CBBF’s cache becomes full over time N 1-slot buckets
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Existing false positives are evicted
randomly on hash collision

L east recently used (LRU) eviction policy to retain frequently| | Tuning CBBFs: How to allocate memory
queried false positives in the cache with high probability between bloom filter and cache?

End-to-End Storage Engine Throughput Improvement
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Near identical performance to
bloom filters in worst case

Experimental Setup CBBFs perform better than standard bloom filters when queries repeat
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