ﬁfA%XQBD Workload-Adaptive Filtering in Storage Engines

School of Engineering Joshua Pan | Advised by Brian Hentschel and Stratos Idreos
and Applied Sciences

The Problem: LSM-tree based storage engines suffer with empty queries and skew workloads

Empty Queries bloom filters

memory V

fence

filters pointers

Vs [00kUP x1000000 FPR:p |
Queries for Older Data nonexistent key X
false
V negative "

e _ /—\.X lookup FPR: p

positive nonexistent key Y

X

LSM-tree based storage LSM-tree performance relies on filters Common queries incur Repeated queries are an issue for current
engines are everywhere to prevent unnecessary disk I/Os many unnecessary |/Os storage engines and call for adaptivity

Our Contribution: Cache-Backed Bloom Filters (CBBFs)

My classmates

"Alice" V > "David” is possibly in the set
"BOb"
\ /

Positive set —
() Bloom Filter Cache x false positive

l (2) When a false positive occurs for the first time

Bloom Filter
l "David" > "David” i1s not In the set

false positive Bloom Filter |
Bloom Filter Cache
Main idea: remember bloom filter’s false (1) Construct bloom - | |
positives in a fixed-size cache (hashtable) filter with positive set (3) When a false positive is queried again

"Wendy"| "Victor" | "David"

CBBF’s cache becomes full over time N 1-slot buckets

Bloom Filter Cache

- - - 9.8 bits/element 0.2 bits/element

N/M M-slot buckets FPR Fewer slots ‘

"“Victor" | "BEve" | —— "Eve" is possibly in the set

_/
false positive

Cache

2nd most recently queried Evicted slot f FPR More slots

Existing false positives are evicted
randomly on hash collision

L east recently used (LRU) eviction policy to retain frequently| | Tuning CBBFs: How to allocate memory
queried false positives in the cache with high probability between bloom filter and cache?

End-to-End Storage Engine Throughput Improvement

1000000 - i i

Standard Bloom Filter
10 bits/element
FPR: 0.008194
600000 4

400000 A i i g

lookup 00000 - Bloom Filter
nonexistent key X 0.8 bits/element + 0.2 bits/element

0- FPR: 0.009031 5% worse throughput
Zipfian distribution 10 million empty queries high Skew Slight Skew High Skew Slight Skew

800000 -

Cosine
Bloom filter

Engine throughput (g/s)

Near identical performance to
bloom filters in worst case

Experimental Setup CBBFs perform better than standard bloom filters when queries repeat

HARVARD
* John A. Paulson daslab.seas.harvard.edu

School of Engineering

and Applied Sciences @ Harvard SEAS

