
Accelerating Query Explanations Using 
Fine-Grained Provenance

Alex Yao, Columbia University

B
ac

kg
ro

un
d 

&
 M

ot
iv

at
io

n
O

ur
 A

pp
ro

ac
h

Ex
pe

rim
en

ts
 &

 R
es

ul
ts

Existing Approach 1: 
IVM

Poor performance over 
large deletions and 
complex queries

Existing Approach 2:
Provenance Circuits

Conceptually great, but 
impractical, inefficient 
evaluation logic

TPC-H at SF 1, randomized independent deletions Performance in Perspective

Capable of handling over 1 million 
deletions a second on analytical queries 

over multiple tables

Beats IVM and existing provenance 
systems by 600x and 10,000x

Our system uses query operator provenance information to 
generate evaluation code which quickly computes deletion results.

Explanation engines are bottlenecked by Query 
Re-execution 🕙, which naively needs to run the original 

query once for each proposed deletion.

Problem Statement

T

F
∧

∨

T

O1

∧

(A - ∇A) ⋈ (B - ∇B) = 

(A ⋈ B) - (∇A ⋈ B + A ⋈ 
∇B - ∇A ⋈ ∇B)

User 
Complaint:

Too 
High!

Explanation Engine

Counterfactual Deletions:
DELETE state=”PA”
DELETE state=”PA” AND age=30
DELETE name=”John Doe”
…

Query 
Re-execution

Top Score

🕙

Delete John Doe 
from Table A

Deletions as Bit Vectors

Parallelization

Input Pruning

Counterfactual Deletions

Small Deletions (0.05%) Medium Deletions (10%)

Ɣ GroupBy Del Op

⋈ Join Del Op

Generated Code

1

2

3

Row # 1 2 3

exists? 1 0 0

Table

Table
Query Res

Table
Thread 1

Thread 2

Thread 3

Join Exists?

Takeaway: Our performance is invariant to deletion size and 
consistently faster than IVM systems.

Avg Throughput: 810,000 deletions/s

>20x >600x

lo
w

er
 is

 b
et

te
r

Input bits

Query Results

id val

b1 1 …

b2 1 …

b3 2 …

id val

a1 1 …

a2 2 …

id val

1 …

1 …

2 …

Join 
Provenance

a1 ∧ b1

a1 ∧ b2

a2 ∧ b3

A B out

a1 b1 1

a1 b2 2

a2 b3 3

A ⋈ B


