Concurrent Link-Cut Trees
Mihail Stoian | Advised by Jana Giceva and Philipp Fent

Introduction

TUTl

Technische Universitat Miinchen

Highlights

Motivation

Link-cut trees: fastest known solution. First parallel implementation since 4(years.

Q\ 4
\ 2
Efficient e——o, @=—o0, and (. at heart of
[link] [cut] [path ® queries] L

> l >

e maximum flow
 online minimum spanning tree

Approach

Parallelize on/y the logic, not the auxiliary splay trees.
Lock preferred paths by locking the topmost node:

Parallelization scheme:
* usean auxiliary lock-free pointer array.

* once locked, check that topmost node did not change.

. perform speciﬁc operations on respective splay tree.

* release locks once the new preferred path has been formed.

Independent operations are performed in parallel.

Synchronize only when preferred paths cross:

expose(11)

expose(12)

€
g@ ©

[1] Batch-Parallel Euler Tour Trees: https://arxiv.org/abs/1810.10738

But: considered unparallelizable [1].

10x speedup.

Evaluation —— path
binary

—e&— random rec.

—eo— star

Batch size: 10° Batch size: 10°

10"

— /‘\\’__M
0O 10 20 30 40 50 0O 10 20 30 40 50
#threads #threads

10x speedup over sequential link-cut trees.

Star trees: root is a hotspot.

Future Work

Theoretical analysis.
Support for binary operations, e.g., lca.

Learned Concurrent Data Structures.

() stoianmihail/concurrent-link-cut-trees ™ mihail.stoian@tum.de

