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Highlights

Motivation

Link-cut trees: fastest known solution. First parallel implementation since 4( years.
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Approach

Parallelize on/y the logic, not the auxiliary splay trees.
Lock preferred paths by locking the topmost node:

Parallelization scheme:
* usean auxiliary lock-free pointer array.

* once locked, check that topmost node did not change.

. perform speciﬁc operations on respective splay tree.

* release locks once the new preferred path has been formed.

Independent operations are performed in parallel.

Synchronize only when preferred paths cross:
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[1] Batch-Parallel Euler Tour Trees: https://arxiv.org/abs/1810.10738

But: considered unparallelizable [1].

10x speedup.
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10x speedup over sequential link-cut trees.

Star trees: root is a hotspot.

Future Work

Theoretical analysis.
Support for binary operations, e.g., lca.

Learned Concurrent Data Structures.
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